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Abstract

This paper demonstrates that empirically grounding the discount factor signifi-

cantly influences the determination of the carbon price. Using two complementary

nonlinear statistical approaches, we assess which utility formulations and corre-

sponding stochastic discount factors best align with U.S. data. We provide evidence

that habit formation is essential for capturing the time variation in the stochastic

discount factor necessary to match the data. This increased time variation raises

the carbon price by 32% and makes it five times more procyclical compared to

standard models. The heightened procyclicality reduces aggregate risk, the risk

premium, and the need for precautionary savings.
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Non-technical summary

This paper explores how macro-finance theory, characterized by realistic discounting, in-

fluence the optimal pricing of carbon emissions. At its core, the “social cost of carbon”

(SCC), or price of carbon, is a measure used to estimate the economic damage caused

by emitting one additional ton of carbon dioxide into the atmosphere. Setting an effec-

tive carbon price—often through a carbon tax that reflects the SCC—helps to reduce

emissions by making carbon-intensive activities more costly.

Our study introduces a model that combines climate economics with macro-finance,

especially in how future damages are discounted, or translated, into present-day terms.

Traditional climate models typically use a deterministic discount rate, which doesn’t align

with real-world financial data. We argue that more realistic, data-driven discounting can

significantly impact the calculated SCC. We show that time variation of the discount

factor are one of the core driver of the SCC, that call for a more ambitious climate

mitigation policy on average, but also adjust relatively more with economic cycles.

What differentiate this study with other standard approach? A key feature of our

model is the incorporation of habit formation in consumption, meaning that people’s

satisfaction depends on how their current consumption compares with past levels. In-

vestors are particularly risk-adverse during recessions, calling for a strong decline in the

stochastic discount factor during recession. By capturing this behavior, our model shows

three results that differentiate with previous evaluations of the SCC.

First, the SCC is about 32% higher when realistic discounting is applied, reflecting

the increased importance of addressing climate damages. The carbon price becomes five

times more responsive to economic cycles, rising during economic booms and falling in

recessions. This procyclicality makes carbon pricing more aligned with business cycles,

which can help stabilize the economy by reducing the need for precautionary savings

and lowering investment risks. We also test our model under various assumptions and

alternative structures to assess its robustness. Our results indicate that aligning carbon

pricing with financial market realities not only yields a more accurate SCC but also pro-

vides a policy that can adapt to changing economic conditions. This approach highlights

the importance of integrating financial principles into climate policy design, providing

policymakers with a more responsive and economically grounded framework for setting

carbon prices.
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1 Introduction

In this paper, we explore how empirically grounding discount rates shapes optimal

carbon pricing. At its core, determining the social cost of carbon (SCC) is fundamentally

an asset pricing problem. The SCC represents the net present value of the marginal

damages caused by an additional unit of carbon dioxide emitted today. Central to this

calculation are the utility function and the stochastic discount factor (SDF), which serve

to translate the future economic damages of carbon emissions into present values.1 This

paper contends that discount rates used in current climate models often lack empiri-

cal grounding. Without realistic discounting, the carbon price could be systematically

underestimated and would fail to adjust adequately during economic recessions.

Determining the appropriate price of carbon remains a contentious issue. This is

highlighted by the debate between William Nordhaus and Nicholas Stern on the proper

discount rate for future climate-related damages. Most studies base their recommenda-

tions on deterministic versions of the discount factor (e.g., Nordhaus, 1991, 2008, 2017).

Yet, both the stochastic nature of the discount factor and its consistency with asset

price data have been largely overlooked in quantitative assessments of the SCC. Recent

advances in modern macro-finance theory present a promising solution to the climate

discount challenge.

An emerging literature on climate risk has introduced the early resolution of uncer-

tainty into carbon pricing (e.g., Cai and Lontzek, 2019; Bansal, Kiku, and Ochoa, 2019;

Barnett, Brock, Hansen, and Hong, 2020; Van Den Bremer and Van Der Ploeg, 2021;

Traeger, 2021). This body of work emphasizes that uncertainty significantly influences

the SCC, through the mechanism of risk preferences affecting the SDF. However, these

studies often focus—at best—on the mean of the risk-free rate as the primary moment for

plausible discounting. Other considerations, such as the volatility of the risk free rate and

risk premium data are not considered while relevant for guiding discounting. Moreover,

these studies do not consider a formal statistical metric for assessing the accuracy and

performance of models in matching macro-financial aggregates and asset prices.

Our study differentiates itself by empirically justifying our choice of discount factors

through matching key asset pricing data. Leveraging recent advances in asset pricing

theory, the main goal of this paper is to evaluate how finance, particularly through em-

1Climate change represents a significant market failure, as it reflects the inability of markets to
internalize the cost of carbon emissions. Setting a carbon tax equal to the SCC is considered the most
effective strategy to correct this failure and reduce emissions. The SCC has become a critical metric in
policy design, as illustrated by the U.S. administration’s adoption of a $51 per ton CO2 rate in 2020.
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pirically grounded discounting, affects carbon pricing. To match asset pricing moments,

we develop a framework for the U.S. economy that integrates core elements of finance,

such as risk preferences and long-run risk (Bansal and Yaron, 2004; Kung and Schmid,

2015). To capture realistic fluctuations in the SDF (e.g., Cochrane and Hansen, 1992), we

also introduce a specification of slow-moving internal habits. Compared to existing liter-

ature, our framework emphasizes time variation in the SDF as an important determinant

of optimal carbon pricing. Additionally, we incorporate climate-related components from

the integrated assessment model literature (e.g. Golosov, Hassler, Krusell, and Tsyvin-

ski, 2014; Nordhaus, 2017), including carbon accumulation, damages, and abatement

technologies.

Our framework introduces novel elements that advance the current state of the liter-

ature. First, our economy comprises an endogenous slope of consumption growth (e.g.,

Kung and Schmid, 2015) that is affected by climate damages, thereby creating long-run

climate risk (Bansal et al., 2019; Casey, Fried, and Gibson, 2024; Nath, Ramey, and

Klenow, 2024). Additionally, the social cost of carbon is driven not only by climate

damages on production, but also by households’ utility functions. We define the latter

as depending on both consumption and environmental quality; as the stock of emissions

harms consumers, utility is modeled as a function of the ratio between consumption and

accumulated atmospheric emissions.2

Beyond these core elements, our approach remains a priori agnostic regarding the

specific utility function that can be used to jointly achieve a 6 percent risk premium and

a 0.4 percent risk-free rate. Traditional macro-finance models typically rely on either

long-run risk or consumption habits, often in isolation, without a statistical compari-

son between each preference formulation. This paper contends that the choice of utility

function is nontrivial for the purposes of carbon pricing and proposes two complemen-

tary statistical methods for carrying out relevant analyses.3 First, we use the simulated

method of moments (SMM) (Hansen and Singleton, 1982) to evaluate the model’s per-

formance in matching key asset pricing moments related to the risk-free rate and equity

premium. As is common practice in macro-finance (e.g., Mehra and Prescott, 1985; Jer-

2This preference for carbon has been empirically documented such as in Baker, Bergstresser, Serafeim,
and Wurgler (2018) and Zerbib (2019), have shown that pro-environmental preferences affect asset pricing
dynamics. They both find a positive and significant premium between green and nongreen bonds (the
‘greenium’), suggesting an important role for these preferences in the ongoing debate on carbon taxation.
In Pàstor, Stambaugh, and Taylor (2021), the effect of climate change on financial returns is explained
by introducing a green factor that captures environmental concerns among investors.

3Our quantitative and statistical assessment employs third-order perturbations in order to capture
time variation in risk premia and uncertainty.
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mann, 1998), this economy is subject to a single source of uncertainty in productivity.

We find our model to be capable of addressing long-standing asset pricing anomalies,

contrasting sharply with the standard macro-environmental approach by generating a re-

alistic equity premium and risk-free rate while remaining consistent with macroeconomic

aggregate dynamics. In a framework consistent with asset price data, our results indicate

that the carbon price is much higher and more procyclical than previously reported in

the climate finance literature. This divergence is attributed to consumption habits, which

induce important time variation in the SDF to match both the observed volatility in the

risk-free rate and the predictability of asset returns.

To assess whether consumption habits should be considered a key component of

the climate risk literature, our second statistical method employs Bayesian estimation

techniques (e.g., Smets and Wouters, 2007). To allow the estimation of the structural

model, fluctuations are driven by various sources of uncertainty.4 Using U.S. data from

1973 to 2023 on GDP, consumption, CO2 emissions, equity premiums, and the risk-free

rate, we evaluate four nested versions of the utility function, ranging from the most ad-

vanced—with both habits and early resolution of uncertainty—to a simple power utility.

By imposing each utility specification as a data-generating process, Bayesian techniques

allow for statistical evaluation and counterfactual analysis, simulating the U.S. economy’s

path under an optimal carbon price policy.

From this two-step empirical methodology, we derive three main results. A primary

finding is the importance of matching the risk premium and risk-free rate in statistically

determining the most suitable preference formulation, and thus the discount rate. Our

estimation techniques show that the best predictive performance is achieved in a model

incorporating both consumption habits and recursive utility. While it is well known from

work by Bansal and Yaron (2004) that recursive utility struggles to generate enough

volatility in the risk-free rate, adding habits introduces sufficient fluctuations in the SDF.

This improves the model’s predictions for the risk-free rate and enhances asset return

predictability

A second significant finding is that consumption habits strongly influence the SDF

and, consequently, both the level of carbon price and its dynamics. Habit formation

amplifies the precautionary savings motive, which raises the SDF. A higher SDF places

greater weight on future climate damages, resulting in a social cost of carbon (SCC) that

4Widespread in macroeconomics, the estimation requires at least as many structural shocks as observ-
able variables. Macro-finance also features alternative sources of fluctuations (e.g., Bansal and Yaron,
2004; Basu and Bundick, 2017).
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is 32% higher than in standard models that do not account for asset price data. Matching

asset pricing data not only affects the level but also the time variation of the carbon price,

making it five times more procyclical than in traditional approaches.5 The heightened

time variation in the SDF under consumption habits strongly exacerbates procylicality,

making the carbon price five times more responsive to economic fluctuations. The in-

fluence of consumption habits on the SDF, as discussed by Abel (1999) and Campbell

and Cochrane (1999), increases agents’ risk-aversion when current consumption falls be-

low past levels. This heightened risk aversion increases the volatility of marginal utility.

Consequently, during recessions, the SDF declines more sharply, intensifying the drop in

the carbon price.

A third and final result concerns the link between the optimal carbon price and the

SDF, challenging the traditional dichotomy between macroeconomics and finance (e.g.,

Cochrane, 2017). In a framework consistent with asset price data, a strongly procyclical

carbon price significantly dampens economic fluctuations. The carbon price makes pro-

duction relatively cheaper (more expensive) during recessions (expansions), which helps

to reduce macroeconomic volatility. By lowering aggregate risk, the carbon price reduces

the welfare cost of economic fluctuations.6 In a more stable economy, investors require less

consumption smoothing and demand lower compensation for holding risky assets. The

asset pricing implications of carbon taxing are significant, with a 1 percent decrease in

the risk premium and a 1 percent increase in the risk-free rate relative to the laissez-faire

economy.

An important contribution of our paper is its estimation of the optimal environmen-

tal tax using Bayesian methods. From a computational perspective, the challenge lies in

developing a tractable nonlinear estimation method, as uncertainty—and, consequently,

higher-order terms in the Taylor expansion—plays a central role in our analysis. The

literature typically employs weak information techniques, wherein a model is evaluated

based on a few selected moments. Our approach, however, imposes the structural model

as the data-generating process that replicates the full realization of observable variables.

Consequently, the estimation does not rely on an arbitrary set of moments but instead on

the exact replication of the sample. To our knowledge, our paper is the first to estimate

5The concept of a procyclical carbon price is not new in deterministic and climate risk models. Since
emissions rise with output, the carbon tax naturally increases (decreases) during expansions (recessions),
as noted by Heutel (2012) using a power utility. We show that early resolution of uncertainty, commonly
used in climate risk models, produces even lower procyclicality than the power utility framework.

6As shown by Tallarini (2000), the welfare cost of business cycle fluctuations is considerably higher
in models that generate realistic risk premiums.
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a macro-finance model with an environmental externality using full-information tech-

niques. A key advantage of our approach is that it allows us to estimate the laissez-faire

equilibrium using U.S. data and then provide a counterfactual scenario under alternative

policies. Our methods could be applied to introduce risk in other policy contexts, such

as fiscal and monetary policies.

Our work is connected to a strand of the literature in which risk does not indepen-

dently influence the determination of the carbon price. This line of research implements

optimal carbon taxes with power utility under certainty equivalence. For example, Nord-

haus (1991, 2008, 2017) provides periodic assessments of the SCC under an exogenously

growing economy with abatement curves. In contrast, Golosov et al. (2014) derive the

optimal carbon tax in a multisector neoclassical model with fossil fuels. All of these stud-

ies uses power utility in a deterministic setting and show that discount rate calibration

significantly impacts the SCC. In contrast, Heutel (2012) produced one of the first stud-

ies to consider the SCC from a business-cycle perspective with stochastic productivity.

Although this is a linearized model under certainty equivalence, Heutel (2012) finds that

the optimal carbon tax is relatively procyclical. Our paper contributes to these various

approaches by introducing risk and providing an empirical foundation for the determina-

tion of the SCC. In doing so, we are able to document how the stochastic nature of the

discount factor matters in the determination of the carbon price.

A second strand of the literature on climate risk rigorously examines the impact of

risk and uncertainty on the determination of the carbon price.7 The studies that comprise

this line of research all share the common assumption of early resolution of uncertainty

to feature realistic discounting, but they differ regarding their modelling assumptions.

For instance, Bansal et al. (2019) explore the asset pricing implications of climate change

as a source of long-run risk. Another approach is that of Van Der Ploeg, Hambel, and

Kraft (2020), who derived the optimal risky carbon tax in an endogenous-growth model

with both dirty and green capital. Van Den Bremer and Van Der Ploeg (2021) study

the effect of risk attitudes and uncertainty on the social cost of carbon, with closed-form

expressions. Similarly, Cai and Lontzek (2019); Traeger (2021); Folini, Friedl, Kübler, and

Scheidegger (2024) show how uncertainty impacts the level of the social cost of carbon in

an extended version of DICE with many sources of uncertainty. Finally, another major

concern for policymakers is that the predicted effect of climate policies on the economy is

7An extended review of the literature on climate-related financial economics, which studies interac-
tions between climate change and financial markets, can be found in work by Giglio, Kelly, and Stroebel
(2020). Similarly, a review of the macrofinancial implications of climate change is provided by Van
Der Ploeg (2020)
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strongly model-dependent. This issue is studied by Barnett, Brock, and Hansen (2021),

who demonstrate how model uncertainty can influence policy formulation. A common

feature of this climate risk literature is the widespread use of recursive preferences and

matching the mean of the risk-free rate as the primary guide for discounting. Conversely,

this paper provides an assessment of the degree to which time variation in the SDF is

also important for matching the volatility of the risk-free rate.

2 The Model

Following Kung and Schmid (2015), we introduce endogenous growth into a version

of the neoclassical growth model featuring a non-standard preference specification. As

initially demonstrated by King, Plosser, and Rebelo (1988), balanced growth can be ob-

tained in the neoclassical growth model by introducing labor-augmenting technological

progress. As opposed to the real business cycle literature, in which the economy’s growth

rate is exogenously determined, here we endogenize the rate of labor-augmenting techno-

logical progress by allowing firms to invest in research and development (R&D).8 Given

that our main focus is the pricing of the environmental externality, we have kept the

endogenous growth component of the model as simple as possible.

Similarly to Kung and Schmid (2015), we describe a growing economy in which some

variables exhibit a time trend. As is usual practice, we then solve a version of the model

in which non-stationary variables are detrended.9 To clarify how endogenous growth

affects the model’s dynamics, we subsequently derive some key model implications using

the stationary equilibrium. Variables that exhibit a time trend are growing in the steady

state, and we use capital letters to denote this set of variables. Stationary variables,

which display no time trend, are denoted using lowercase letters.

2.1 Firms

The representative firm produces the economy’s final output good Yt using labor nY t

and capital KY t as production inputs.10 The production function, which has a Cobb-

8Imposing restrictions on preferences is also necessary to derive an equilibrium consistent with bal-
anced growth.

9Deriving a stationary equilibrium that is consistent with balanced growth requires several assump-
tions, which we only briefly discuss in the main text. A detailed analysis is presented in section A of the
online appendix.

10Following King et al. (1988), since time devoted to work-related activities is finite, hours worked
cannot increase in the steady state. In the non-stationary economy, therefore, the growth rate of nY t is
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Douglas form, is given as

Yt = exp(−ζxt)AεAtK
α
Y t(nY tHt)

1−α, (1)

where A is the fixed level of productivity and εAt is the exogenous technology shock

governed by the process

log εAt = ρA log εAt−1 + ηAt, (2)

where ηAt is normally distributed with mean zero and standard deviation std(ηAt).
11

The term exp(−ζxt) represents the climate damage to production, an emissions-driven

reduction in productivity, that is commonly used in the IAM literature (e.g., Nordhaus,

1991). In line with Golosov et al. (2014), the damage takes the form of an exponential

function, where ζ is a parameter that determines the magnitude of the damage. Notice

that the stock of emissions, xt, is assumed to be stationary. The rationale for this

assumption is discussed in Section 2.2.

Labor-augmenting technological progress takes the form of human capital accumula-

tion, the stock of which is denoted by Ht. Following Kung and Schmid (2015), our aim

is to account for the fact that R&D investment is a key decision with significant long-

run implications, as it impacts the economy’s growth rate. The accumulation of human

capital is governed by the following law of motion:

Ht+1 = Ht + IHt. (3)

In this expression, IHt is the amount invested in human capital, which determines the

evolution of labor-augmenting technical progress Ht.

Investment in technological progress depends not only on the quantity of capital KHt

and labor nHt allocated to RD, but also on the level of human capital Ht:

IHt = exp(−ζxt)κεAtK
ξ
Ht(nHtHt)

1−ξ. (4)

In this equation, the parameter κ represents the efficiency of the economy’s R&D process

by determining the increase in investment that can be achieved for a given amount of

resources that firms devote to R&D. The parameter ξ denotes the capital intensity of the

R&D sector, while nHt denotes the number of hours worked in the R&D sector.

zero.
11With labor-augmenting technological progress, balanced growth requires the exogenous technology

shock process εAt to be stationary (e.g., King et al., 1988).
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In light of the evidence documented by Casey et al. (2024), the damage function

exp(−ζxt) also impacts the production function of R&D investment. Thus, in line with

the latest available evidence, our model accounts for the fact that the environmental

externality can be a source of long-run risk on consumption growth (e.g., Bansal and

Yaron, 2004; Bansal et al., 2019).

The economy’s capacity to convert R&D expenditures into long-term growth not only

depends on the economy’s stock of human capital Ht, but also on exogenous variations

in technological progress εAt. For the sake of parsimony, the TFP shock is common

across sectors.12 Following Jermann (1998), capital accumulation is subject to adjustment

costs. Unlike in Jermann’s seminal contribution, however, firms in our endogenous growth

economy also need to decide how to allocate the aggregate capital stock, Kt, between the

production of the final good and R&D:

Kt = KY t +KHt. (5)

The economy’s capital stock is governed by the following law of motion:

Kt+1 = (1− δK)Kt +

(
χ1

1− ϵ

(
IKt

Kt

)1−ϵ

+ χ2

)
Kt, (6)

where IKt is the amount of resources devoted to physical capital accumulation. The stock

of physical capital depreciates at the rate δK , while χ1 and χ2 are parameters that are

chosen so that the economy’s deterministic steady state is independent of adjustment

costs.13 The parameter ϵ controls the elasticity of the supply of capital with respect to

investment. When set to zero, the supply of capital is perfectly elastic and the economy

reduces to a model without adjustment costs.

The firm’s objective is to maximize shareholder value by solving the following opti-

mization problem:

max
Yt,Kt,KY t,KHt,nY t,IHt,µt,et

E0

∞∑
t=0

mtDt (7)

where the firm’s dividends are given as follows:

Dt = Yt −WtnY t − IKt − TEtet − η1µ
η2
t Yt. (8)

12The case of multiple sources of fluctuations is studied in Section 4 of the paper.
13This assumption reflects the notion that adjustment costs impact the model’s short-term dynamics

but have no long-run effect in a deterministic environment.
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Relative to the model used by Kung and Schmid (2015), the potential for environmental

regulation affects the problem of the representative firm by adding two additional terms.

First, the fiscal authorities can decide to impose a tax on domestic emissions, which

is denoted by TEt. In the laissez-faire equilibrium, government intervention is absent,

and the tax is set to zero. As we discuss in Section 2.10, under the optimal policy, the

government is able to set the tax to a level that fully offsets the market failure present

in the laissez-faire equilibrium.

Second, building on the class of models derived from integrated assessment models

(IAMs) (e.g., Nordhaus, 2008), firms have access to an abatement technology which can

be used to reduce the flow of emissions generated by the production process. We use

a standard specification by which µt represents the fraction of emissions abated, where

1 ≥ µt ≥ 0. The parameter η1 ≥ 0 determines the maximum share of output that can be

abated, while η2 > 0 is the elasticity of the abatement cost with respect to the fraction

of emissions abated. As we discuss in Section 2.5, firms in the laissez-faire equilibrium

have no incentive to use this costly abatement technology, such that µt is equal to zero

for all t.

Since the firm is owned by the representative agent, the flow of future expected div-

idends is discounted using mt, the stochastic discount factor of the agent, which we

derive in Section 2.3. As labor supply is completely inelastic and plays no role in this

class of models (e.g., Jermann, 1998), we simplify the analysis by assuming that R&D is

performed by managers.14

2.2 Climate Dynamics

Building on the literature on integrated assessment models (IAMs), our modeling ap-

proach utilizes the ’carbon cycle model’ framework (e.g., Dietz, van der Ploeg, Rezai, and

Venmans 2021), which traditionally encompasses multiple carbon reservoirs. However,

in line with the recent work of Dietz and Venmans (2019),15 we have adopted a simpli-

fied version of the carbon cycle featuring only one carbon reservoir. This streamlined

specification allows for a more straightforward, closed-form expression of the optimal

14The implicit assumption is that households do not possess the skills to work in the R&D sector.
Consequently, their compensation solely depends on the number of hours worked in the production
sector. This assumption, which comes without loss of generality, simplifies the analysis by ensuring
that firms do not need to be recapitalized if a large recession hits the economy. This issue can also
be circumvented by adding monopolistic competition, which would come at the cost of adding another
degree of freedom.

15Nordhaus (1991) or Golosov et al. (2014), among others, also employ a single carbon reservoir.
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carbon tax, while still ensuring that the model dynamics remain consistent with climate

dynamics.

The accumulation of carbon dioxide (CO2) and other greenhouse gases (GHGs) in the

atmosphere, resulting from human economic activity, is determined as follows:

xt+1 = (1− δX)xt + ιX (et + e∗t ) , (9)

where xt+1 represents the stock of anthropogenic emissions in the atmosphere, δX is the

quarterly rate of depreciation of the stock of carbon in the atmosphere, et is the flow

of domestic emissions, expressed in gigatons of CO2, and ιX is a physical parameter

converting CO2 emissions into carbon.

As briefly mentioned in Section 2.1, we assume that the stock of carbon does not grow

in the steady state. Given our focus on the United States (US), this assumption is justi-

fied by the evolution of emissions.16 The stationarity of both emissions and the carbon

stock ensures that the balanced growth path assumption is maintained, particularly with

respect to climate damages that are not homogeneous in the production function.

The last term in Equation (9), e∗t , represents the flow of emissions from the rest of

the world, which is exogenously determined. These global emissions are also assumed

to be stationary. Although it is soon to be able to draw definitive conclusions, evidence

indicates that in China, the world’s largest emitter, emissions are anticipated to peak

in the near future (Chen, Xu, Gao, and Li, 2022). Additionally, substantial investments

in clean energy production have contributed to a decoupling of GDP growth from CO2

emissions in many countries, further suggesting that global emissions may eventually

stabilize. Following Heutel (2012), we therefore assume that emissions from the rest

of the world are non-cyclical and can be expressed as a proportion of U.S. emissions,

e∗ = κe, so as to capture the relative contribution of U.S. emissions to atmospheric

carbon accumulation.

Domestic emissions result from production by firms:

et = (1− µt)ΥtYt (10)

where µt represents the fraction of emissions that firms choose to abate, while Υt is the

16To motivate this modelling choice, in section B.2 of the online appendix, we formally test the sig-
nificance of trends in macroeconomic time series. In contrast to other macroeconomic variables, CO2

emissions in the US exhibit no time trend from 1973 to 2023, the period for which our empirical analysis
is conducted.
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rate at which emissions decouple from GDP. Unlike the DICE model (e.g., Nordhaus,

1991), our formulation endogenizes the decoupling rate, making it proportional to tech-

nological progress. Since output follows a time trend while emissions are stationary,

balanced growth requires that the relationship between et and Yt is driven by green tech-

nological progress, reflected in the decline of Υt. Specifically, green technological progress

is tied to the economy’s stock of human capital:

Υt = ιE/Ht (11)

where ιE is parameter that the intensity of CO2 emissions from the production of firms.

2.3 Households

Regarding preferences, we have employed a novel specification that combines two

strands of literature. As is typically done in asset pricing, we follow the long-run risk

approach pioneered by Bansal and Yaron (2004) and adopt Epstein-Zin-Weil (EZW)

preferences (Epstein and Zin, 1989; Weil, 1989; Weil, 1990). Compared to Kung and

Schmid (2015) and Kaltenbrunner and Lochstoer (2010), among others, our approach is

unique in that it combines EZW preferences with habit formation.

Compared to the habit specification of Dew-becker (2014), our first distinction in-

volves adopting an internal specification similar to that in Jermann (1998). The second

difference is that we introduce slow-moving habits (e.g., Campbell and Cochrane, 1999)

using the specification discussed in Fuhrer (2000). Finally, following the example of

Stokey (1998), Acemoglu, Aghion, Bursztyn, and Hemous (2012), and others, the dam-

age caused by emissions not only affects production but is also a source of disutility for

households.

The utility function of the representative agent takes the following form:

Ut =

[
(1− β)

(
Ct

xνt
− Zt

)θ

+ β
[
Et

(
U1−σ
t+1

)] θ
1−σ

] 1
θ

. (12)

The evolution of the slow-moving habit stock, which we denote by Zt, is given as follows:

Zt+1 = ϖZt + (1−ϖ)
Ct

xνt
, (13)

where 0 ≤ ϖ ≤ 1. Our specification assumes that habits are formed over a composite
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good (e.g., Jaccard, 2014) consisting of both consumption and the stock of emissions.17

Relative to Kung and Schmid (2015), our framework includes both habits as well as an

environmental externality. The latter adds an additional parameter ν that quantifies the

impact of emissions on utility.18

The time t budget constraint of the representative household is given as follows:

WtnY t + stDt +Bt ≥ Ct + PEt(st+1 − st) + pBt(Bt+1 −Bt) + THt. (14)

Revenues consist of labor income, denoted by WtnY t, where Wt represents the wage

rate. The capital income of our agents comprises two components. As owners of the

representative firm, they receive dividend income, Dt, which depends on the number

of shares, st, issued by the firm. Secondly, agents earn income from holding risk-free

government bonds, receiving a fixed coupon payment normalized to 1 for each bond held

Bt.

On the expenditure side, total income is primarily allocated to consumption, denoted

by Ct. Each period, households also choose an amount of equity to purchase at price

PEt. Additionally, the quantity of one-period risk-free bonds purchased each period is

denoted by Bt+1. The price of these one-period risk-free bonds, pBt, is inversely related

to the risk-free rate rFt.
19 Finally, we assume that the government levies a lump-sum tax

of THt.

2.4 Government and Market Clearing

The government finances its spending through issuing a short-term risk-free bond and

collecting taxes. Its budget constraint is

pBt(Bt+1 −Bt) + THt + TEtet = Gt +Bt. (15)

17Notice that with this specification, the model without habits is obtained by setting ϖ equal to 1. For
ϖ = 1, we implicitly adjust the steady-state of Z, which becomes zero instead of one. This adjustment
allows us to nest the CRRA utility function within the habit formation framework, providing a unified
model that accommodates both preferences.

18This parameter, which modulates agents’ aversion to emissions, is meant to capture plausible values
for the social cost of carbon. Its calibrated value is discussed in detail in Section 3.1 while its moment
implications are discussed in Section 3.7.

19In equation (14), the quantity of equities is assumed to be stationary, whereas the quantity issued of
bonds has a time trend. This reflects the standard assumption made in the literature that equities are
in fixed supply. In contrast, the quantity of bonds issued by the government is non-stationary.
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Revenue comes from the sale of newly issued short-term government bonds pBtBt+1 to

households. Tax income is composed of two components: (i) the lump-sum tax levied on

households THt, and (ii) the revenues obtained from the implementation of an environ-

mental tax on emissions TEtet. Expenditures encompass public spending Gt and bond

repayment Bt. Note that in the baseline case, Gt = G is assumed to be fixed.20

The aggregate market clearing condition is obtained by consolidating the budget con-

straints of households (14), firms (7) and the government (15). It reads as follows:

Yt = Ct + IKt +Gt + η1µ
η2
t Yt. (16)

2.5 The Competitive Equilibrium

We now describe a competitive equilibrium, where households and firms make in-

dependent economic decisions without government intervention. This is also known as

a laissez-faire equilibrium. In this setting, social preferences for carbon emissions may

differ across firms and households. We propose the following definition to characterize

this equilibrium:

Definition 1 A competitive equilibrium is a sequence of prices and quantities that satis-

fies three conditions:

(i) Optimality: It solves the optimization problems of both households and firms. House-

holds maximize lifetime utility as described in Equation (12), subject to constraints

(13) and (14). Firms maximize profits as given by Equation (7), subject to con-

straints (1), (3), (4), (5), and (6).

(ii) Market Clearing: Prices clear markets, ensuring that the quantity supplied equals

the quantity demanded in all markets, with the aggregate market clearing condition

given by Equation (16).

(iii) Zero taxes on emission: In this equilibrium, government intervention is absent on

climate distortion, implying a tax rate of zero on emissions, whereby TEt = 0 for

all t. Firms and households treat the existing stock of emissions, the evolution of

which is determined by Equation (9), as a given variable.

20In section 4, we allow for time-varying public expenditures to capture cyclical changes in aggregate
demand, while in subsection 3.8, the impact of distortionary fiscal policy is examined.
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Compared to what would be socially optimal, the absence of carbon pricing in the

laissez-faire equilibrium leads to excessive emissions. The competitive equilibrium is

inefficient for two main reasons.

First, firms fail to internalize the fact that emissions increase the stock of carbon in

the atmosphere, which in turn negatively affects their productivity. For a given atomistic

firm, the effect of its own production on the aggregate stock of carbon is negligible.

Consequently, firms have no incentive to use a costly abatement technology to reduce

emissions, as the productivity benefits from emissions abatement are essentially zero at

the individual firm level.

Second, firms do not account for the impact of their emissions on consumers. The

fact that the stock of carbon is a source of disutility for households is not internalized in

a competitive equilibrium where firms seek to maximize profits. A decentralized equilib-

rium in which the effect of emissions is not borne by the polluter, therefore, leads to an

inefficient allocation of resources.

As a result, firms opt for a zero-abatement strategy in the laissez-faire equilibrium for

all t:

µt = 0. (17)

2.6 The Centralized Equilibrium

As decentralized markets failed to deliver an efficient allocation of resources, we will

now characterize the centralized equilibrium. The centralized equilibrium is the allocation

that a social planner would implement under commitment. We will then show how the

first-best allocation chosen by a social planner can be achieved by introducing a tax in

the decentralized equilibrium described in Section 2.5.

We start by defining the centralized equilibrium. This equilibrium provides the bench-

mark against which the allocation obtained in the decentralized economy should be com-

pared.

Definition 2 The optimal policy problem for the social planner is to maximize total

welfare in Equation (12) by choosing a sequence of allocations for quantities that satisfies

Equations (1), (3), (4), (5), (6), (9), (13), (14), and (16), given initial conditions for the

endogenous state variables K0, H0, Z0 and x0.

In the centralized equilibrium, the law of motion for the stock of carbon in Equation

(9) appears as an additional constraint in the planner’s optimization problem. The neg-

ative externality on production and utility exerted by the accumulation of carbon in the
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atmosphere is therefore fully internalized. Since the externality resulting from carbon

emissions is the only source of market failure, a first-best allocation of resources can be

achieved in a centralized equilibrium.

2.7 The Stationary Economy

Given the human capital law of motion (3) and subject to the restrictions on preferences

discussed by King et al. (1988), it is possible to derive a stationary equilibrium in which

all variables grow at the same rate. In line with established methods in the field, we

achieve this stationary equilibrium by normalizing trended variables by the rate of labor-

augmenting technological progress, denoted as Ht. By dividing both sides of Equation (4)

by Ht, the growth rate of technological progress, Ht+1/Ht, denoted as γt, is determined

as follows:

γt = 1 + iHt (18)

where iHt represents investment in human capital in the detrended economy.

In our setting, the effects of endogenous growth on the stationary equilibrium are fully

encapsulated by γt. To underscore how the introduction of endogenous growth influences

prices and quantities, we will now discuss the model’s main implications with respect to

the stationary economy.21

2.8 The Stochastic Discount Factor

With a combination of Epstein-Zin-Weil preferences and internal habits, the econ-

omy’s stochastic discount factor (SDF) takes the following form:

mt+1 = βγθ−1
t

(
ut+1

Et(u1−σ
t+1 )

1
1−σ

)1−σ−θ (
xt+1

xt

)−ν

 (1−β)

(
ct+1
xνt+1

−zt+1

)θ−1

−φt+1(1−ϖ)

(1−β)
(

ct
xνt

−zt
)θ−1

−φt(1−ϖ)

 (19)

where mt+1, ut+1, ct, and zt denote the SDF, the value function in Equation (12), con-

sumption, and the habit stock in the detrended economy. φ is the Lagrange multiplier

associated with the habit stock in Equation (13).

What are the novel asset pricing implications? With balanced growth, any adjust-

ment to the discount factor for growing economies (e.g., Kocherlakota, 1990) affects the

21The full derivation of the stationary equilibrium is provided and discussed in section A.3.2 of the
online appendix.
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continuation value of agents.22 In our economy, the fact that γt is endogenously deter-

mined introduces a source of time variation in the SDF. Depending on the value of θ, the

economy’s growth rate γt can thus increase or reduce mt+1. Moreover, as the stock of

carbon xt is a source of disutility, its evolution affects how agents discount future payoffs.

Another key difference with respect to the climate risk literature is that the Lagrange

multiplier φt, which reflects the impact of internal habits, also affects discounting and,

hence, asset prices.23

2.9 Pricing Carbon

In the centralized equilibrium, agents are forced to internalize the impact of pro-

duction on emissions. Unlike the competitive equilibrium, where the government takes

the emissions trajectory as given, the planner in the centralized equilibrium determines

the optimal sequence of emissions over time. It is important to note that this policy is

implemented with commitment. The optimality condition with respect to xt+1, expressed

in gigatons of CO2, yields the following formula for the optimal carbon price, vEt:

vEt = Etmt+1γt

(
ιX

(
ν
ct+1

xt+1

+ ζ (ϱt+1yt+1 + ϕt+1iHt+1)

)
+ (1− δX)vEt+1

)
(20)

where this price is expressed in trillions USD per gigaton of CO2. One can convert this

into the social cost of carbon (SCC) by expressing it in the form SCCt = 1, 000vEt, which

reflects a cost in dollars per ton of CO2.

This condition closely mirrors the central asset pricing formula commonly found in

finance textbooks. Here, the price of the carbon emissions stock is interpreted as the net

present value of future marginal damages caused by emissions. While the stock of carbon

is stationary, the carbon price exhibits a time trend. Consequently, in the stationary

equilibrium, the SDF mt+1 must be adjusted and multiplied by γt.

The damage term consists of two main components. The first component reflects

the cost borne by consumers, denoted by ν ct+1

xt+1
, which indicates the marginal disutility

of carbon. Given a preference specification consistent with balanced growth, this term

remains unaffected by the specific form of the utility function, as neither habit formation

22See Section 3.7 for a quantitative analysis of the case when endogenous growth becomes exogenous.
23Notice also that our SDF reduces to that typically used in the literature on long-run risk (e.g., Bansal

and Yaron, 2004) if we remove both habit formation and the environmental externality by setting ϖ = 1
and ν = 0.
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nor the EZW parameters alter the disutility from carbon.

Since emissions affect both the consumption and production sides of the economy, the

second component captures the marginal decline in productivity due to carbon accumu-

lation, expressed as ζ (ϱt+1yt+1 + ϕt+1iHt+1). Unlike in certain well-known specifications

(e.g., Nordhaus, 2008; Golosov et al., 2014), this damage also extends to the R&D sector,

influencing human capital accumulation. Furthermore, the damage is influenced not only

by the quantities of output, yt, and human capital investment, iHt, but also by their

respective shadow prices, ϱt+1 and ϕt+1.
24

Finally, unlike a typical asset pricing formula, the continuation value, vEt+1, accounts

for the depreciation of the emissions stock, which occurs at a rate of δX per quarter.

2.10 Optimal Emissions Pricing

In the absence of carbon pricing, the allocation achieved in the competitive equi-

librium is suboptimal. This market failure creates an opportunity for government in-

tervention to address the environmental externality by ensuring that the decentralized

allocation aligns with the social planner’s optimal allocation.

Specifically, the government can introduce a tax on emissions to be paid by firms. In

the stationary equilibrium, this tax is denoted τEt, where τEt = TEt/Ht. This policy tool

can be viewed as a tax on carbon emissions, similar to a standard Pigouvian tax that aims

to compel firms to internalize the social cost of carbon emissions on household utility and

production. This approach corrects the market failure (i.e., the negative externality) by

setting the tax equal to the price of carbon emissions.25

Comparing the social planner’s solution to the competitive equilibrium, we propose

the following:

Proposition 1 The first-best allocation can be achieved by using the instrument τEt in

the decentralized equilibrium. The first-best allocation of resources corresponding to the

planner’s problem can be attained by setting the tax on emissions such that

τEt = vEt.

24ϱ and ϕ are the two Lagrange multipliers associated with constraints (1) and (4), respectively.
25An alternative interpretation is that the government creates a market for carbon emissions (i.e., a

carbon-permits market). In this case, the government regulates the quantity of emissions. An equivalence
between the tax and permit policies holds when the regulator has symmetric information about all state
variables for any outcome under the tax policy and a cap-and-trade scheme (Heutel, 2012).
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As discussed in the online appendix of the paper, setting the environmental tax τEt

to vEt ensures that the first-order conditions in both the competitive and centralized

equilibria are identical.

Corollary 1 In the decentralized equilibrium, setting the tax on emissions τEt to its

optimal value ensures that firms choose a socially optimal level of abatement by setting

µt such that:

µt =

(
vEtιE
η2η1

) 1
η2−1

(21)

The optimal abatement level is determined by the price of carbon as well as the form

of the abatement technology discussed in Section 2.2. Since abatement reduces profits,

this condition also illustrates that firms will not be willing to bear this cost unless an

enforcement mechanism is in place. Indeed, in the absence of carbon pricing, vE equals

zero, leading to zero abatement of emissions.

3 Moments Implications of Pricing Carbon

Conventional asset-pricing models are typically evaluated on their ability to jointly

replicate realistic moments related to macroeconomic aggregates, such as consumption,

output, and investment, as well as financial moments, such as the risk premium and

risk-free rate. We estimate our baseline setup using the Simulated Method of Moments

(SMM), following the double-step estimation method of Hansen and Singleton (1982).

Since this paper investigates the implications of replicating financial moments as a

relevant factor for carbon pricing, we also estimate a CRRA specification, where most

asset pricing moments are not matched. This CRRA framework is widely used in envi-

ronmental economics, as in Heutel, 2012, Golosov et al., 2014, and Nordhaus, 2017. By

comparing carbon policy outcomes in models that are and are not consistent with asset

pricing data, we assess the implications of incorporating realistic asset pricing dynamics

into carbon pricing models.

3.1 Calibration

The calibrated parameters are reported in Panel A of Table I. The calibration of

the parameters related to business-cycle theory is standard: government spending as a

percentage of GDP is set to 20 percent, capital intensity α to 0.33, and the share of hours

worked nY + nH per day to 20 percent. To match the relative size of the R&D sector
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in output, we assume that the household spends 2.9% of their daily hours in the R&D

sector. As in integrated assessment models, the levels of variables (such as output and

emissions) and their corresponding steady states must have interpretable values in order

to obtain a realistic accumulation of atmospheric carbon. The fixed level of productivity,

denoted A, in the production function is meant to capture an output of Y = 4.50 trillion

USD in 2015.

Table I: Model Parameters

This table reports model parameters. Panel A lists the calibrated parameter values. Panel B lists the parameters

estimated using the simulated method of moments (SMM). We solve and simulate the model at a quarterly frequency

based on 200 series of simulated data of 200 quarters. Column Baseline reports the estimation outcome under recursive-

habits utility, while CRRA provides the outcome under standard constant relative risk aversion utility.

Panel A: Calibrated Parameters

Parameter Symbol Value

Productivity level A 4.1800
Spending-to-GDP ratio G/Y 0.2000
Labor intensity α 0.3300
Total labor supply nY + nH 0.2000
R&D labor demand nH 0.0290
World emissions factor κ 3.0000
CO2 to carbon units ιX 0.2730
US CO2 intensity (GtCO2/trillion USD) ιE 0.4500
Carbon transfer rate to deep oceans δX 0.0021
Initial carbon stock (GtC) x0 120.00
Abatement cost level η1 0.0200
Abatement cost curvature η2 2.6000
Damage elasticity ς 0.00017
Carbon disutility ν 0.16070

Panel B: Parameters Estimated via SMM

Parameter Symbol Baseline (SD) CRRA (SD)

Productivity standard deviation std(εAt) 0.0154 (0.0008) 0.0118 (0.0001)
Productivity persistence ρA 0.9717 (0.0068) 0.9985 (0.0075)
Steady state growth rate g 0.59% (0.01%) 0.62% (0.02%)
Elasticity of capital adjustment costs ϵ 4.0960 (0.0360) 0.2000 (0.1026)
Relative risk aversion σ 5.9871 (0.6691) 1.1023 (0.0778)
Habits degree ϖ 0.9408 (0.0018) -
EZH utility curvature θ 0.6872 (0.0315) -
Discount factor β 0.9844 (0.0025) 0.9877 (0.0011)
Capital intensity in R&D ξ 0.1165 (0.0074) 0.1658 (0.0080)
Depreciation rate of capital δK 0.0082 (0.0040) -

The environmental component parameters of the model, when not estimated, are

derived from the integrated assessment literature. The average emissions intensity, ιE,

is set to align with the U.S. post-WWII carbon intensity of e/y = 0.45 Gt CO2. It

is assumed that the rest of the world’s emissions constitute approximately 75% of the
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total anthropogenic emission flow, leading to the emission factor κ = 3. The conversion

factor of CO2 emissions into atmospheric carbon units is represented by the physical

parameter ιX = 3/11. Regarding the continuation rate of carbon in the atmosphere,

denoted δX , its value varies significantly across studies. We adopt a 120-year half-life for

atmospheric carbon dioxide, with robustness checks for alternative values provided in the

appendix.26 The initial stock of anthropogenic CO2 at the start of the sample in 1973 is

set at x0 = 120 GtCO2.
27 For the damage function, the climate damage parameter γ is

set to reflect a 15% GDP loss in the long run under the business-as-usual policy, resulting

in ν = 1.25 × 10−4. This value is based on Nordhaus (2017), though it is conservative

compared to other estimates that suggest a GDP loss exceeding 60%. Finally, for the

abatement cost function, we set η1 = 0.020, which is close to the backstop price of

carbon in the RICE-2011 model for the U.S., while the curvature parameter η2 = 2.6 is

sourced from the latest versions of the DICE model. To achieve realistic carbon price

values, we adjust the carbon disutility parameter ν to 0.1607, resulting in a social cost of

carbon of $51 per ton in the business-as-usual scenario, consistent with the U.S. Biden

administration’s social cost of carbon.

3.2 Targeted Moments

The 10 targeted moments are reported in Table II.28 Building on work by Jermann

(1998), our framework is designed to match the following moments: the standard devia-

tions of output, consumption, and investment, expressed in growth rates, as well as the

26This parameter value varies across studies. Heutel (2012) considers a lifetime of 82 years and provides
a description of the range of carbon lifetimes, which lies between 19 to 139 years across studies. In
particular, following Ita and Robert (1993) and Nordhaus (1991), we use a decay rate implying a half-life
of 120 years. We use a value between Heutel (2012) and Nordhaus (1991) that translates to 480 periods
in a quarterly frequency model (δX = 1/480). As noted by Dietz and Venmans (2019), Integrated
Assessment Models (IAMs) have certain limitations, including the handling of carbon’s near-permanent
lifecycle. A more accurate representation of climate dynamics would involve using a Transient Climate
Response to Cumulative Emissions of Carbon Dioxide (TCRE) framework. However, since our primary
objective is to isolate the impact of finance on the social cost of carbon compared to standard IAMs, we
have deferred extending our model to the TCRE framework for future research. Nevertheless, we have
conducted a robustness check assuming a carbon lifetime of up to 200 years, and the core results of our
paper remain consistent.

27Because SMM/Bayesian estimations are sampling-based methods, our estimation includes an initial
set of 50 burn-in periods spanning 1960-1973. Each chain of the SMM method initializes in 1960 with
x0 and randomly samples based on the distribution of innovations. The remaining samples, starting in
1973, are more likely to be representative of the true distribution of the model due to the burn-in phase.
On average, over 200 chains, the stock of carbon in 1973 is 120 GtC. Further discussion, as well as the
time path of carbon stock, is reported in Section D.2 of the online appendix.

28Appendix B provides in appendix a description of the data sources.
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means and standard deviations of the risk-free rate and the equity premium. To inform

the growth-related parameters, we include the mean growth rate of output and the mean

ratio of capital in R&D to total capital, which helps estimate the capital intensity in the

R&D sector. Since the model dynamics critically depend on the allocation of output be-

tween consumption and investment, we also include the average consumption-to-output

ratio in the list of moments to match.

Compared to Jermann (1998), our estimation analysis includes additional moments

related to long-run growth, as well as the consumption-to-GDP ratio and the volatility

of macroeconomic variables. Because our model incorporates long-run risk and recursive

preferences, it offers additional degrees of freedom to capture a broader set of moments

more accurately.

3.3 Estimation of Model Parameters

The remaining set of parameters that are not calibrated are estimated. Given that

our approach builds on the approach of Jermann (1998), we follow a similar strategy by

using the simulated method of moments (SMM) to minimize the distance between a set

of empirical moments and the corresponding simulated moments produced by the model.

We implement the SMM routine according to standard practice in the field (e.g., Hansen

and Singleton 1982; Kogan, Li, and Zhang 2023). Given a vector ψ of target moments in

the data, we obtain parameter estimates using

p̂ = argminp

(
ψ − 1

S

S∑
i=1

ψ̂i (p)

)′

W

(
ψ − 1

S

S∑
i=1

ψ̂i (p)

)
,

where ψ̂i is the vector of moments computed in one out of S simulations of the model.29

Building on the work of Jermann (1998), we estimate the remaining 10 parameters that

are not calibrated, as reported in Panel B of Table I. Similar to Jermann (1998), the first

five parameters selected to maximize the model’s ability to reproduce the target moments

are the adjustment-cost parameter, the habit parameter, the subjective discount factor,

the technology-shock standard deviation, and the shock-persistence parameter. We also

introduce five new parameters relative to that study: the steady-state growth rate, the

EZH utility curvature, the capital intensity in R&D, the depreciation rate of capital, and

29We simulate the model 200 times (S = 200), with each sample consisting of 200 observations,
consistent with the size of the empirical sample. The optimization problem is solved using the simplex
method to find the global minimum. We adopt the standard two-step variance-covariance estimator for
W as proposed by Hansen and Singleton (1982).
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the relative risk aversion.

Furthermore, to assess how the utility specification affects the model’s ability to cap-

ture asset pricing moments, we estimate two versions of our model. The first, referred to

as EZWH, features a recursive utility function with lifestyle habits. As discussed in the

model section, this utility formulation sits at the intersection of Epstein and Zin (1989)

and Jaccard (2014). Conversely, we also estimate a version of the model with standard

constant relative risk aversion (CRRA), commonly used in most integrated assessment

models, but known for its poor performance in replicating asset pricing moments with

realistic levels of risk aversion.

Table II: SMM Targeted and Non-Targeted Moments under Alternative Prefer-
ences

This table presents the target moments from the data, along with their 5th and 95th percentiles. The two rightmost

columns display the model-based results under recursive-habit preferences (EZWH) and power utility (CRRA). A star

(∗) next to a value indicates a targeted moment. Note that the set of targeted moments differs between the EZWH and

power utility models.

Moment Comparison

Moment Symbol Data [0.025;0.975] EZWH CRRA

Targeted Moments:

Output growth mean E(100∆ lnY ) 0.65 [0.49;0.80] 0.68* 0.71*
Output growth SD std(100∆ lnY ) 1.10 [1.00;1.22] 1.03* 1.06*
Consumption growth SD std(100∆ lnC) 1.01 [0.92;1.12] 1.03* 1.07*
Investment growth SD std(100∆ ln I) 2.12 [1.93;2.35] 2.11* 2.10*
Risk-free rate mean E(100 rF ) 0.13 [0.01;0.24] 0.09* 2.02
Risk-free rate SD std(100 rF ) 0.81 [0.74;0.90] 0.79* 0.10*
Equity premium mean E[100 [rM − rF ]) 1.85 [0.68;3.02] 1.79* 0.00
Equity premium SD std(100 [rM − rF ]) 8.40 [7.65;9.32] 8.41* 0.23
Consumption-to-output ratio E(100C/Y ) 61.8 [61.6;61.9] 61.7* 61.7*
R&D to total capital ratio E(100KH/KY ) 17.0 [16.8;17.2] 17.0* 17.0*

Non-Targeted Moments:

Cons. growth persistence AC(∆ lnC) -0.12 [-0.24;-0.01] -0.01 0.01
Tobins q growth std(100 lnQ) 7.93 [7.32;8.64] 8.69 0.42
Emission growth E(100∆ lnE) 0.05 [-0.90;1.00] 0.00 0.00
Social cost of carbon $/tCO2 E(1, 000 vE) 51.0 50.9 38.6

While the baseline model includes the 10 target moments mentioned earlier, a CRRA

specification would typical fail to capture key features of financial data. To avoid the

implausible parameter estimates that would arise from fitting CRRA to financial data,

we preemptively exclude three finance-related moments from the CRRA estimation, as

listed in Panel B, column CRRA of Table I. Following standard identification practices in

SMM, we also remove three parameters from the estimation to maintain an equal number
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of instruments and target moments. Specifically, the habit parameter ϖ and the Epstein-

Zin relative risk aversion parameter σ are excluded (as they do not apply to CRRA).

Additionally, we exclude the depreciation rate of capital δK and instead calibrate it to

0.0082, the estimated value from the baseline model.

3.4 The Matching Performance of Each Utility Specification

Following standard practice in the asset pricing literature, we compare the model’s

implications—assuming the U.S. economy presently reflects the laissez-faire equilibrium—to

the data. In Table II, the first and second columns show the estimated moments and

their symbols, respectively. All results are presented at a quarterly frequency.

Consider first the baseline model, the Epstein-Zin-Weil model with slow-moving habit

formation. This utility specification allows the model to reproduce all the targeted mo-

ments, with all simulated moments lying within the confidence intervals of the data.

Compared to Jermann (1998),30 who did not match the volatility of the risk-free rate,

our model successfully captures both the low average risk-free rate and its standard devi-

ation of 0.79 percentage points. Additionally, while Jermann (1998) produced a relatively

high volatility for the market return, our model effectively captures the volatility of the

returns on both risk-free and risky assets.

As shown in the lower part of the table, which reports moments that were not targeted,

the main model specification captures salient features of the data in several key areas:

consumption persistence, Tobin’s q growth, emission growth, and the social cost of carbon

as set by the Biden administration. All of these are consistent with observed data.

In particular, the model’s ability to capture fluctuations in Tobin’s q demonstrates its

robustness in incorporating investment dynamics, which is a significant improvement

over traditional CAPMs. It has been widely documented that consumption exhibits

a large first-order autocorrelation coefficient (e.g., Bansal and Yaron, 2004; Kung and

Schmid, 2015). However, the COVID-19 outbreak, characterized by a significant decline

in output, has disrupted this well-known strong first-order correlation pattern. Our model

successfully captures this new feature of the US data.

In comparison, the power utility model with long-run risk (referred to as CRRA

in Table II) performs relatively well in capturing the key features of macroeconomic

variables. However, as expected, it fails to replicate asset pricing moments, such as the

mean and volatility of the equity premium and risk-free rates, as well as non-targeted

30Note also that Bansal and Yaron (2004) demonstrate insufficiently large fluctuations in the risk-free
rate with recursive utility and long-run risk.
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moments like Tobin’s q. This outcome is unsurprising, given that the model is not

calibrated to financial data, and capturing these moments would require implausibly

large risk aversion coefficients (Mehra and Prescott, 1985).

3.5 Impacts of Finance on Optimal Carbon Pricing

In this subsection, we examine the effects of finance—specifically, the role of asset

pricing—on the optimal pricing of carbon emissions in a version of the model that captures

key features of financial data. The columns labeled EZWH Carbon Price and CRRA

Carbon Price in Table III present the simulated moments when the optimal carbon price

is implemented.

A significant finding is that a realistic discount rate, grounded in financial moments,

substantially impacts the price of carbon E(vE), as shown in the EZWH columns in

Table III. The price is 32% higher than that obtained under the power utility function.

This has crucial implications for mitigation policies, especially in frameworks where risk

plays no role in the SDF (e.g., Heutel, 2012; Golosov et al., 2014; Nordhaus, 2017). An

environmental model consistent with realistic discounting necessitates a 25% increase in

mitigation efforts E(µ). This result aligns with the climate risk literature, which suggests

that uncertainty is a significant factor in determining the stance of environmental policy.

The underlying reason for this effect lies in the relative change in the discount rate

provided by EZWH preferences. Two mechanisms, driven by the financial component

of the model, contribute to the increase in the carbon tax. Both mechanisms relate to

the determination of the SDF. First, the early resolution of uncertainty, due to recur-

sive preferences, alters the pricing of future risks in present terms. Investors’ aversion

to uncertainty increases their demand for insurance against potential declines in future

consumption, which raises the SDF and, consequently, the SCC. Second, the impact of

consumption habits on the SDF, as discussed by Abel (1990) and Campbell and Cochrane

(1999), demonstrates that agents become more risk-averse during periods when consump-

tion is low relative to past levels. In response, investors increase their precautionary

savings to buffer against potential future declines in consumption, further raising the

SDF.

Given the long lifetime of carbon, the social planner prices atmospheric carbon sim-

ilarly to a financial asset with a claim on marginal climate damages. By applying the

same discounting principles as those used for financial assets, the pricing of carbon is sig-

nificantly influenced by finance. The increase in the SDF, driven by the model’s ability to
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generate a realistically low interest rate, amplifies the relative weight of future marginal

climate damages, necessitating a more stringent environmental policy. Thus, the effects

of finance—specifically, the role of asset pricing—on the optimal pricing of carbon emis-

sions suggest a higher social cost of carbon, much larger than those derived from power

utility frameworks like that of Nordhaus (2017). This finding corroborates the conclu-

sions of Cai and Lontzek (2019) and Van Den Bremer and Van Der Ploeg (2021), though

our framework is distinguished by its consistency with all asset pricing and its inclusion

of slow-moving habits.

Table III: Moments under laissez-faire versus carbon price policy

This table compares the moments in the laissez-faire equilibrium and the economy under the optimal carbon policy specifi-

cations. The welfare cost of fluctuations is calculated as the fraction of output that would need to be added or subtracted

to make the stochastic economy equivalent to the deterministic one.

Moment Symbol EZWH CRRA
Laissez-faire Carbon Price Laissez-faire Carbon Price

Targeted Moments:

Output growth mean E(100 ln∆Y ) 0.68* 0.72 0.71* 0.73
Output growth SD std(100 ln∆Y ) 1.05* 1.09 1.09* 1.09
Consumption growth SD std(100 ln∆C) 1.03* 1.01 1.07* 1.08
Investment growth SD std(100 ln∆I) 2.11* 1.88 2.10* 2.07
Consumption-to-output ratio E(100C/Y ) 61.7* 60.3 61.7* 59.0
R&D to total capital ratio E(100KH/KY ) 17.0* 17.5 17.0* 17.3*
Risk-free rate mean E(100 rF ) 0.09* 0.35 2.02 2.05
Risk-free rate SD std(100 rF ) 0.79* 0.71 0.10* 0.10
Equity premium mean E(100 [rM − rF ]) 1.79* 1.53 0.00 0.00
Equity premium SD std(100 [rM − rF ]) 8.41* 7.31 0.23 0.42

Non-Targeted Moments:

Abatement share E(µ) 0.00 0.60 0.00 0.75
Carbon stock mean (GtC) E(x) 310 165 306 186
Carbon price in $/tCO2 mean E(1000 vE) 0.00 72.3 0.00 51.0
Carbon price in $/tCO2 SD std(1000 vE) 0.00 15.7 0.00 4.51
Welfare mean E(U) 0.15 0.18 -746 -738
Welfare cost (% GDP) E(U%) 0.60 0.55 0.09 0.08
Dividend growth SD std(100 ln∆D) 0.69 1.37 0.70 0.92
Bond premium mean E(100 [rB − rF ]) 1.99 1.81 0.73 0.75
Carbon price-cons. beta cov(v̂E, ĉ)/V (ĉ) 0 4.95 0 0.75

3.6 Procyclical Carbon Price and Asset Returns

A key difference in this framework compared to the existing literature is that the

link between the optimal tax and the SDF breaks the classic dichotomy between macroe-

conomics and finance (e.g., Cochrane, 2017). This macro-finance union is evident in the

implementation of a carbon price, which influences asset valuation. The equity premium

declines from 1.79 to 1.53 percent on quarterly basis, while the mean risk-free rate more

27



than triples, increasing from 0.09 to 0.35 percent. Annually, this yields about a 1 percent

change in each rate.

Why does environmental policy affect asset valuation? This effect is directly related

to the procyclical nature of the carbon tax.31 It is well established in the literature with

power utility (e.g., Heutel, 2012; Golosov et al., 2014) that the carbon tax is inherently

procyclical. Since the carbon tax, representing a sum of marginal climate damages, is

proportional to output, it naturally exhibits procyclicality. Under power utility, a 1

percent increase in consumption leads to a 0.75 percent rise in the carbon tax to curb

the corresponding boom in carbon emissions, as measured by cov(v̂E, ĉ)/V (ĉ).

In an economy with realistic discounting, the SDF exhibits a significant time variation

and heightened procyclicality that increases by a factor of 5 compared to power utility.

This means that the carbon price will rise significantly more during booms and fall more

sharply during recessions, thereby reducing aggregate risk.

This increased procyclicality affects investors and breaks the macro-finance dichotomy.

To illustrate how reducing uncertainty about consumption fluctuations affects investors,

Table III reports our measures of welfare and the cost of business cycle fluctuations,

denoted by E(U) and E(U%), respectively.
32 By smoothing consumption fluctuations, a

carbon tax with realistic discounting reduces aggregate risk, as evidenced by a 10 percent

reduction in the welfare cost of fluctuations. Investors exhibit a reduced precautionary

saving, leading to a 1% annual increase in the risk-free rate.

The lowered risk premia can be attributed to changes in either the SDF or dividends.

To isolate the effect of the SDF on the valuation of risky assets, consider the risk premium

on bonds, which differs from the market rate due to the absence of dividends in their

payoff. The risk premium on bonds decreases by 0.18 percent quarterly, approximately

the same as the reduction in the risk premium on dividend claims. This effect confirms

that the smoothing effect of the carbon tax also contributes to a reduction in risk premia.33

31To measure this procyclicality, we calculate the beta between the log of the carbon tax and the log
of consumption using a linear regression v̂Et = α+βĉt+ϵt, where β measures the degree of co-movement
between the carbon tax and changes in consumption, expressed as log deviations from the steady state.

32Since our model separates risk aversion from the intertemporal elasticity of substitution, interpreting
welfare costs computed directly from the utility function can be challenging due to strong local nonlin-
earities (e.g., Tallarini, 2000). Following Jaccard (2024), we compute welfare costs from the production
side. This approach determines the fraction of output that would be gained or lost when comparing the
stochastic and deterministic economies, providing reasonable values of the welfare cost. As demonstrated
by Tallarini (2000), our measured welfare cost of business cycle fluctuations is significantly higher (0.6%
of GDP versus 0.09% in CRRA) in models capable of generating risk premiums of a realistic magnitude.
Because investors are risk-sensitive, their precautionary motive is reinforced by recursive utility and habit
formation.

33The dominant role of the SDF in determining risk premia is further confirmed by the increased
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In our general equilibrium model, the smoothing effect of the carbon tax reduces

the compensation required by investors to hold risky assets and decreases the need for

precautionary saving.

3.7 Intuitions: the Core Mechanisms of Carbon and Asset Pricing

This paper introduces two key findings that contrast with the existing literature: the

pronounced procyclicality of carbon pricing and the reduction in risk premia following

the implementation of a carbon tax. To investigate which channels drive these effects,

Table IV considers the EZWH preferences estimated under the simulated method of

moments (SMM). We systematically deactivate different mechanisms and measure their

respective impacts on core moments relevant to our research questions.

Table IV: Sensitivity of moments under laissez-faire (LFP) versus carbon price
(CBP) policy

This table compares the moments in the laissez-faire (LFP) equilibrium and the economy under the optimal carbon
policy (CBP) specifications. All moments are reported per quarter. ĉ denotes the log deviation of consumption from
the steady state, rF the risk-free rate, ep the equity premium rM − rF , vE the effective carbon tax expressed in $ per
tCO2 by multiplying by factor 1,000, and cov(v̂E , ĉ)/V (ĉ) is measured by coefficient β estimated in the OLS regression
v̂E = α + βĉ + ϵ. Each moment is computed on 200 parallel chains with 200 observations per chain. All variants of the
model have the same calibration, differing only in a single restriction as reported in the first column of the table.

std(100 ĉ) E(100 rF ) E(100 ep) E(1000 vE) std(1000 vE)
cov(v̂E ,ĉ)

V(ĉ)

LFP [CBP ] LFP [CBP ] LFP [CBP ] LFP [CBP ] LFP [CBP ] LFP [CBP ]

Baseline
EZWH 4.75 [4.48 ] 0.09 [0.35 ] 1.79 [1.53 ] 0.00 [72.3 ] 0.00 [15.7 ] 0.00 [4.95 ]

Utility functions
EZW (ϖ = 1) 7.75 [7.65 ] 1.73 [1.74 ] 0.13 [0.14 ] 0.00 [60.1 ] 0.00 [5.19 ] 0.00 [0.88 ]
Habits (θ = 1− σ) 5.18 [4.90 ] 1.21 [1.44 ] 1.75 [1.68 ] 0.00 [34.5 ] 0.00 [11.6 ] 0.00 [7.49 ]
CRRA (θ = 1− σ, ϖ = 1) 6.57 [6.48 ] 4.39 [4.49 ] 0.70 [0.68 ] 0.00 [14.2 ] 0.00 [2.29 ] 0.00 [3.03 ]

Tax schemes
Fixed tax (vE = v̄E) 4.75 [4.72 ] 0.09 [0.24 ] 1.79 [1.68 ] 0.00 [37.4 ] 0.00 [0.00 ] 0.00 [0.00 ]
Income/dividend tax (adjusted THt) 4.75 [4.48 ] 0.09 [0.35 ] 1.79 [1.53 ] 0.00 [72.3 ] 0.00 [15.7 ] 0.00 [4.95 ]
Income/dividend tax (adjusted Gt) 5.15 [4.89 ] -0.23 [0.04 ] 2.09 [1.81 ] 0.00 [64.98 ] 0.00 [15.29 ] 0.00 [4.91 ]

Macroeconomic assumptions
Exogenous growth (γt = γ̄) 6.06 [5.78 ] -1.1 [-0.9 ] 3.37 [3.07 ] 0.00 [46.2 ] 0.00 [15.7 ] 0.00 [5.94 ]
Neutral env. pref. (ν = 0) 4.83 [4.72 ] 0.19 [0.30 ] 1.74 [1.62 ] 0.00 [27.8 ] 0.00 [6.63 ] 0.00 [4.75 ]
Household heterogeneity 4.83 [4.49 ] -0.0 [0.30 ] 1.92 [1.60 ] 0.00 [79.4 ] 0.00 [17.5 ] 0.00 [5.03 ]

It is noteworthy that, in any formulation, the implementation of a carbon tax leads to

a reduction in consumption volatility. This is indicated by the first column of std(ĉ) when

comparing the laissez-faire policy (LFP) against the carbon price policy (CBP). However,

volatility of dividend growth resulting from carbon price policy. The heightened perceived risk and
uncertainty associated with investments would typically require a larger premium as compensation.
Since risk premia are instead reduced, one can conclude that the effect from the SDF dominates.
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the procyclical nature of financial dynamics is primarily driven by slow-moving habits

rather than recursive preferences. This is evident in the last column cov(v̂E, ĉ)/V (ĉ),

where the co-movement is consistently greater under habit formation (EZWH and habits

alone) compared to other formulations of the utility function. The time variation in the

SDF induced by the habit stock amplify the joint fluctuations in consumption and the

carbon tax.

The macro-finance union observed in our results originates from the presence of con-

sumption habits, as shown in Table IV, since this effect only manifests under such pref-

erences. The impact of consumption habits on the SDF, as discussed by Abel (1990)

and Campbell and Cochrane (1999), demonstrates that agents become more risk-averse

during periods when consumption is low relative to past levels. A strongly procyclical car-

bon price helps mitigate fluctuations in marginal utility, reducing investors’ risk aversion.

This decrease in consumption volatility lessens the precautionary savings motive among

investors, leading to a higher risk-free rate. Furthermore, by stabilizing consumption

patterns, overall economic risk is diminished, resulting in lower risk premia.

Additionally, long-run risk (LRR) influences the SDF by moderating the co-movement

between consumption and the carbon tax, as it must also align with the long-run techno-

logical trend.34 In the presence of a fixed technological trend (as shown in the row labeled

“exogenous growth” in Table IV), procyclicality is further reinforced, with cov(v̂E, ĉ)/V (ĉ)

approaching 6. The environmental tax smooths fluctuations in the marginal utility of

consumption, thereby amplifying the effect of the carbon price on asset prices.

Finally, environmental preferences, denoted by ν, play a significant role in shaping

asset prices in the laissez-faire economy. By comparing the baseline case with the neutral

environmental preference rows in Table IV, one can observe how climate damage alone

as unique distortion affect the moments. The presence of climate disutility, with v > 0,

significantly lowers the risk-free rate due to the precautionary motive, while the risk

premium increases.

3.8 Consumption smoothing and fiscal policies

The mechanism through which climate policy affects asset prices primarily hinges

on the smoothing effect of tax policy. To isolate the contribution of an exacerbated

34LRR also impacts the risk premium by reducing it. Assets negatively correlated with long-run
consumption growth (i.e., assets that provide returns when long-term consumption expectations worsen)
serve as hedges and therefore tend to have lower risk premia. In the absence of stochastic long-term
growth, this hedging benefit disappears thus explaining the rise up to 3% of the risk premium.
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procyclical carbon tax on asset returns, we fix the tax at its steady-state level, vE = v̄E,

as shown in Table IV.35 The results indicate that under an acyclical carbon price, the

reduction in consumption volatility is minimal, leading to only a modest reduction in risk

premia and a slight increase in the risk-free rate. Therefore, much of the asset pricing

effect is confirmed to emanate from the high procyclicality itself, rather than simply a

permanent change in the level of the carbon tax.

To further investigate how fiscal policy assumptions affect our main results, we will

expand the fiscal block to include income and dividend taxes.36 We will examine how

income and dividend taxes interact with carbon pricing and asset valuations.37 To ex-

plore this, we simulate a scenario where both income and dividend taxes are set at 15%,

corresponding to the average rates in the U.S. for 2021 (based on U.S. Federal Income

Tax data). The updated household and government budget constraints are as follows:

(1− τw)WtnYt + (1− τd)stDt +Bt ≥ Ct + PEt(st+1 − st) + pBt(Bt+1 −Bt) + THt (22)

pBt(Bt+1 −Bt) + THt + TEtet + τwWtnYt + τdstDt = Gt +Bt (23)

where τw and τd represent the income and dividend taxes set at 0.15 in the laissez-faire

economy. Since government debt is in net zero supply, any change in the fiscal block affects

other components of the government budget constraint. The introduction of a carbon

tax provides additional revenue to the fiscal authority but also reduces the tax base for

other revenues. Therefore, we allow for a more realistic fiscal budget by adjusting either

household lump-sum transfers, TH (see Income/Dividend Tax row with TH in Table IV),

or public spending, G (see Income/Dividend Tax row with G).38

These changes in fiscal spending may impact consumption smoothing and alter the

reduction in risk premia observed in the baseline model. Similar to the fixed carbon

tax scenario, a 15% income and dividend tax does not offset the consumption smoothing

35Note that the fixed carbon tax is detrended, implying that the carbon tax grows at a constant rate
proportional to output growth in the growing economy.

36Barrage (2020) explores the impact of carbon taxes on fiscal revenues, noting that carbon taxation
can potentially shrink the tax base for other revenue streams.

37A capital tax could also be introduced; however, since firms act as their own suppliers, it would not
directly impact the household’s budget constraint. Similarly, a consumption tax could be implemented,
but its effects would cancel out in the Euler equation, rendering it ineffective. Lastly, while a carbon
tax could be applied to labor costs, given the inelasticity of labor supply, it would not affect equilibrium
wages.

38When lump-sum transfers are allowed to adjust, they increase by approximately 3% in the steady
state under the optimal carbon policy compared to the laissez-faire scenario. In contrast, public spending
increases by around 5%.
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effects introduced by a carbon price. First, due to the permanent income hypothesis

in our framework, changes in lump-sum transfers do not affect the Euler equation or

the resulting moments. In contrast, in the scenario where government spending adjusts

to carbon tax revenues, the volatility of consumption increases, thereby amplifying the

precautionary savings motive and raising the risk of holding risky assets. Overall, the

core findings of the paper remain robust even when accounting for a more comprehensive

fiscal block.

3.9 Consumption smoothing and households heterogeneity

We extend our analysis to incorporate heterogeneity, acknowledging that representative-

agent models does not capture the wealth distribution. To address this, we consider an

economy with heterogeneous agents, consisting of a representative saver (sa) and a rep-

resentative spender (sp). The representative saver earns wages, receives dividends, and

earns returns on bonds, while the representative spender collects wages for labor provided

and consume it. Both agents pay lump-sum taxes or receive lump-sum transfers from the

government. Their respective budget constraints are given by:

Wtn
sa
Yt
+ stDt +Bt ≥ Csa

t + PEt(st+1 − st) + pBt(Bt+1 −Bt) + T sa
Ht

(24)

Wtn
sp
Yt

≥ Csp
t + T sp

Ht
(25)

In this framework, the pricing kernel for carbon no longer coincides with the pricing

kernel for assets (from the saver). The planner seeks to maximize the discounted lifetime

aggregate utility of consumption, u(Ct), where Ct = χcC
sa
t + (1 − χc)C

sp
t . Here, χc

represents the share of savers in the economy, set at 70%, in line with Kaplan, Moll, and

Violante (2018) for the U.S. economy. Transfers are distributed proportionally according

to the population share of each representative agent, with THt = χcT
sa
Ht + (1− χc)T

sp
Ht.

The last line of Table IV presents the results when we introduce heterogeneity, reflect-

ing an economy where asset pricing is concentrated among a limited number of investors.

Because a significant fraction of agents has limited access to financial markets to smooth

consumption, they primarily consume their income, increasing aggregate risk. As a re-

sult, the risk of holding risky assets grows for savers, while their demand for safe assets

rises. This leads to a 10% increase in both the level and volatility of the carbon price

compared to the representative-agent case, thereby reinforcing our core findings. In this

heterogeneous economy, the carbon tax becomes more procyclical, amplifying the asset

pricing effects of climate policy.
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4 The Cyclical Implications of Carbon Pricing

In the previous section, we discussed how finance implies significant procyclicality

of the carbon price when the utility function exhibits habit formation. Is this class of

utility function favored by the data? To answer this question, we estimate the model not

only on specific asymptotic targeted moments (as in SMM), but also on the conditional

realization of shocks through full-information methods (e.g., Smets and Wouters, 2007).

The advantage of this methodology is that it aims to replicate the entire realization of

the data, allowing us to discern which utility function best replicates the data from a

statistical standpoint. The following subsections discuss the methodology employed for

the estimation of the nonlinear model, the description of prior and posterior distribu-

tions, and a quantitative analysis based on the sequences of shocks and set of parameters

estimated through the Bayesian methodology.

4.1 Methodology

In order to accurately measure higher-order effects related to risk-sensitive prefer-

ences, we consider a third-order approximation of the decision rules of our model, based

on the laissez-faire version of the economy. Estimating dynamic general equilibrium

models using higher-order approximations remains a challenge as the nonlinear filters

required to form the likelihood function are computationally expensive. The paper relies

on the inversion filter, as the latter offers a computationally affordable alternative to

apply nonlinear models to data.39 To allow the recursion, this filter requires that the

number of fundamental shocks be equal to the number of observable variables.40 Be-

cause our sample includes five observable variables, we introduce four additional sources

of fluctuations in the model in addition to the TFP shock. Those shocks take the form

log(εJt) = ρJ log(εJt−1) + ηJt for j = {B,G,E,D}.
A first shock is introduced to the household discount factor to capture exogenous

demand shifts (see Basu and Bundick, 2017). Utility εBtCt/x
ν
t both in welfare function

and habit stock is multiplied by εBt in Equation 12 and 13. A second shock affects public

spending, with Gt = GεGt in Equation 15 and 16, where G is the structural component

39Initially pioneered by Fair and Taylor (1987), this filter extracts the sequence of innovations recur-
sively by inverting the observation equation for a given set of initial conditions. Unlike other filters (e.g.,
Kalman or particle), the inversion filter relies on an analytic characterization of the likelihood func-
tion. Kollmann (2017) provided the first application of the inversion filter to second- and third-order
approximations to the decision rules in a rational-expectations model.

40Note that for linearized models, this restriction is standard such as in Smets and Wouters (2007).
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of public spending and εGt its cyclical counterpart (see Smets and Wouters, 2007). A

third shock is introduced to domestic emissions in Equation 10, which is now calculated

as (1− µt)ΥtYtεEt in order to capture cyclical changes in the carbon intensity of the US

economy. Finally, the last shock is a dividend shock (see Bansal and Yaron, 2004) that

captures additional variability in the distribution of dividends. It is assumed that this

shock follows a unit root ρD = 1 so as to capture drifts in the diffusion of dividends.

Our data, when shared, are consistent with those used in the SMM section, covering

the same sample period. Data sources and transformations are detailed in Appendix B.

The measurement equations linking our model to the data are
Real output growth

Consumption-to-GDP ratio

CO2 emissions growth

Real risk-free interest rate

Ex post equity premium

 =


∆ log (Yt)

Ct/Yt

∆ log (et)

rFt

rMt − rFt−1

 . (26)

4.2 Parameter Estimation

As for the SMM estimation, we use the same calibration as in Table I and the same

set of parameters to be estimated. Following the standard practice in estimated macroe-

conomic models, we employ Bayesian methods by augmenting the likelihood function

with priors so as to address misspecification issues. Table V summarizes the prior and

posterior distributions of the structural parameters for the U.S. economy.

Specifically, the persistence of shocks follows a beta distribution with a mean of 0.5

and a standard deviation of 0.2. For the standard deviation of shocks, we use an inverse

gamma distribution with a mean of 0.001 and a standard deviation of 0.0033, similarly

to Christiano, Motto, and Rostagno (2014). The steady-state percent growth rate of

productivity g follows a gamma distribution with a mean of 0.01 and a standard deviation

of 0.001 in order to match the average growth rate of the US economy. The habit

parameter ϖ is assigned a beta distribution with a mean of 0.5 and a standard deviation

of 0.08. The elasticity of Tobin’s Q to the investment-capital ratio ϵ follows a gamma

distribution with a mean of 5 and a standard deviation of 0.5, consistent with Jermann

(1998). The rest of the macroeconomic parameters have priors that are consistent with

parameter estimates in SMM. We assume that the capital intensity in the R&D sector ξ

follows a beta distribution with a mean of 0.1 and a standard deviation of 0.04, consistent

with its value estimated in SMM. Additionally, the discount factor β follows a beta
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Table V: Prior and posterior distributions of structural parameters of the model
with recursive preferences and habit formation

This table reports the means and the 5th and 95th percentiles of the posterior distributions drawn from height parallel
Markov Chains Monte Carlo of 10,000 iterations each. The sampler is the Metropolis-Hasting algorithm with a jump
scale factor, so to match an average acceptance rate close to 25–30 percent for each chain. In the column Shape, B
denotes the beta, IG2 the inverse gamma (type 2), IG the inverse gamma (type 1), G the gamma, N the Gaussian.

Prior Distribution Posterior Distribution
Shape Mean Std Mode Mean [5%:95%]

Panel A: Shock processes
Productivity shock std(ηAt) IG2 0.001 0.0033 0.0128 0.0130 [0.0118:0.0144]
Preference shock std(ηBt) IG2 0.001 0.0033 0.0091 0.0094 [0.0085:0.0104]
Dividend shock std(ηDt) IG2 0.001 0.0033 0.0935 0.0938 [0.0870:0.1011]
Emission shock std(ηEt) IG2 0.001 0.0033 0.0219 0.0222 [0.0205:0.0242]
Spending shock std(ηGt) IG2 0.001 0.0033 0.0229 0.0239 [0.0194:0.0284]
Persistence productivity ρA B 0.5 0.2 0.9751 0.9750 [0.9668:0.9842]
Preference presistence ρC B 0.5 0.2 0.9496 0.9517 [0.9402:0.9651]
Emissions presistence ρE B 0.5 0.2 0.9648 0.9625 [0.9266:0.9870]
Sprending presistence ρG B 0.5 0.2 0.7422 0.7487 [0.7174:0.7817]

Panel B: Structural parameters
Steady state growth g G 0.01 0.001 0.0057 0.0057 [0.0052:0.0065]
Capital in R&D ξ B 0.1 0.04 0.0733 0.0738 [0.0504:0.0997]
Discount factor β B 0.985 0.001 0.983 0.9834 [0.9818:0.9850]
Investment cost ϵ G 5 0.5 2.4009 2.4053 [2.3822:2.4364]
Capital depreciation δK B 0.01 0.005 0.0106 0.0102 [0.0077:0.0128]
Utility curvature θ N 0 0.1 0.2313 0.2012 [0.1044:0.2970]
Risk aversion σ IG 4 3 2.8758 2.8844 [2.8571:2.9126]
Habit smoothing ϖ B 0.5 0.08 0.9507 0.952 [0.9387:0.9620]

distribution with a mean of 0.985 and a standard deviation of 0.001, while the capital

depreciation rate δK also follows a beta distribution with a mean of 0.01 and a standard

deviation of 0.005, allowing their respective posterior values to remain within the intervals

found under SMM.

Regarding the priors for intertemporal elasticity of substitution (IES) and risk aver-

sion, we follow the survey by Cai and Lontzek (2019) on the usual calibration practices

in the field. That survey indicates that IES usually lies between 1 and 2, so we impose

a gamma distribution on the utility curvature parameter θ. We assume a mean of 0 and

a standard deviation of 0.1 so as to keep the posterior values within the usual range

considered in this literature. In contrast, risk aversion σ typically lies between 2 and 10

in finance-related literature but can be much higher in macroeconomic literature (e.g.,

Rudebusch and Swanson, 2012 and Basu and Bundick, 2017). To cover a parameter range

consistent with both lines of research, we impose an inverse gamma distribution with a
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mean of 4 and a standard deviation of 3. The inverse gamma distribution is sufficiently

diffuse in the right tail, allowing the data to accommodate both relatively low and high

values (see Barro, 2009 and Basu and Bundick, 2017, respectively).

The priors and their corresponding posterior distributions for the structural parame-

ters are detailed in Table V. In addition to prior distributions, Table V reports the means

and the 5th and 95th percentiles of the posterior distributions for the model with recursive

preferences and habits.41 Our estimates of the structural parameters previously examined

by Smets and Wouters (2007) align mostly with their findings. This includes the persis-

tence of productivity and spending shocks, as well as the growth rate of 0.57%. For the

elasticity of Tobin’s Q to the investment-capital ratio ϵ, we find a posterior mean of 2.4,

which is lower than that found by Jermann (1998) but falls within the accepted interval

of values for his SMM matching. In addition, the discount factor, capital depreciation,

habit smoothing, and capital intensity in R&D are remarkably similar to the results of

the SMM, as their estimated values in SMM lie within the 95% confidence interval of the

Bayesian estimation. In contrast, there are two notable differences: utility curvature and

risk aversion. The Bayesian estimation implies a relatively lower IES, close to 1.3, and

a relatively lower risk aversion that is consistent with the acceptable parameter range in

Mehra and Prescott (1985). Because the risk aversion is above IES, consumers prefer to

resolve uncertainty about future outcomes sooner by commanding a premium for holding

assets that are subject to long-term risks. Note also that our economy exhibits an IES

larger than 1 and long-run risk; agents demand large equity risk premia because they fear

that a reduction in economic growth prospects will lower asset prices, as documented by

Bansal and Yaron (2004).

4.3 The Empirical Dominance of Recursive Utility with Habits

Generating sufficiently large risk premia amid realistic fluctuations in consumption

growth is a central challenge in asset pricing theory. To address this challenge, the litera-

ture frequently employs either habit formation (Abel, 1990; Jermann, 1998) or recursive

preferences (Weil, 1989; Epstein and Zin, 1989; Weil, 1989). In this paper, our methodol-

ogy allows us to determine from a statistical standpoint which formulation of the utility

function is the most likely to have generated the sample. Relative to our baseline, impos-

ing θ = 1 − σ eliminates the distinction between IES and risk aversion, while imposing

ϖ = 1 shuts down effects from consumption habits. Removing both effects collapses

41Other estimated parameters for alternative utilities are provided in section D.4 of the online appendix
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our function to the standard case of expected utility. Table VI presents four alternative

preference specifications, ranging from the most sophisticated to the simplest: recursive

preferences with habit formation (EZWH), recursive preferences (EZW), habit formation

(Habits), and CRRA. Note that the latter represents the utility model most commonly

used in macroeconomics and integrated assessment models.

Table VI: Comparison of prior and posterior model probabilities under alternative
preferences

In the table, EZWH denotes recursive utility with lifestyle habits; EZW denotes recursive utility without habit formation
(ϖ = 1); Habit denotes utility with habit formation (θ = 1−σ); CRRA in the final column corresponds to neither habits
nor separation between IES and risk aversion. The prior probability denotes the degree of belief in the model’s validity
before observing the data and is assumed to be the same across the four competing models. The marginal data density
is calculated by integrating the likelihood of the observed data over all possible values of the model parameters, weighted
by the prior distribution of these parameters. The Bayes ratio is the ratio of the marginal data densities of two models,
using the EZWH specification as the reference. The posterior model probability reflects how the observed data update
the initial beliefs (priors) about the models. The model with the highest posterior probability (or Bayes ratio) is
typically considered the most likely to be the correct model given the data. The posterior probabilities of all models
under consideration usually sum to 1. The prediction errors (RMSE) indicate the in-sample root mean squared errors
of prediction at forecasting horizons of one to four quarters for each observable variable. Lower RMSE values suggest
better model performance.

EZWH EZW Habits CRRA
Restriction on habits: − ϖ = 1 − ϖ = 1

Restriction on recursive preferences: − − θ = 1− σ θ = 1− σ

Posterior comparison
Prior probability 0.25 0.25 0.25 0.25
Log marginal data density −1 788.27 −1 824.62 −1 789.88 −1 847.20
Bayes ratio 1.00 0.00 0.347 0.00
Posterior model probability 0.74 0.00 0.26 0.00

Prediction errors (RMSE)
Output growth 1.108 1.109 1.122 1.149
Consumption-to-GDP 0.618 0.605 0.607 0.768
Emission growth 2.460 2.502 2.465 2.445
Risk-free rate 0.618 0.706 0.662 0.840
Equity premium 8.272 8.226 8.210 8.598

For a given sample, we examine which of the four different data generating processes

(DGP) is most likely to have generated the sample. The DGP exhibiting the highest

log marginal data density is EZWH. To facilitate the interpretation of log marginal data

density, model comparison can be expressed as probabilities. First, we impose an uninfor-

mative prior distribution over each model (i.e., 25% prior probability). Table VI displays

both the posterior odds ratios and model probabilities, using EZWH as the benchmark

model. The prior probability of 0.25 is significantly updated by the data. The EZWH

model has a high posterior probability of 0.74, indicating that given the data, this model

is the most likely among the ones considered. The Habits model has a posterior proba-
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bility of 0.26. Although the data do not favor it as strongly as the EZWH model, it is

still a contender, unlike the EZW and CRRA models.

To understand why one model performs better than another, we examine the in-sample

prediction errors for each observable variable. We calculate the in-sample root mean

squared errors (RMSE) for predictions at forecasting horizons of one to four quarters.42

The EZWH model generally fits well across all metrics, achieving the lowest RMSE for

output growth and the risk-free rate, and it performs well on other metrics too, making

it a robust overall model. The EZW model performs slightly better for the consumption-

to-GDP ratio and the equity premium, but not by a significant margin. However, it

underperforms with respect to the risk-free rate, which is not surprising given that Bansal

and Yaron (2004)’s recursive utility model is known for not generating sufficiently large

variations in the risk-free rate. The Habits model shows comparable performance but does

not consistently outperform the EZWH model. The CRRA model generally exhibits the

highest RMSE values, indicating the poorest fit among the models.

From this section, we can conclude that a core ingredient in replicating US financial

and macroeconomic data is habit formation, as it underpins the two best predictive

models. Much of this performance is driven by a lower RMSE on the risk-free rate. As

highlighted in the SMM section, this finding carries significant implications, suggesting

substantial time variation in the SDF, a highly procyclical carbon tax, and a reduction

in risk premia.

4.4 Predictability of Asset Returns

Thus far, our analysis has focused primarily on unconditional moments. In this section,

we extend the evaluation to conditional moments, specifically assessing the predictabil-

ity of asset returns. Since the work of Fama and French (1989), many studies have

shown that conditional expected excess returns are inversely related to business condi-

tions. Does our framework capture asset return predictability? One simple way to assess

predictability both in the data and in the model is to run a local projection for a horizon

h = {0, 1, . . . , 8}:

∆xit+h = α(h) + γt(h) + β(h) log
(
P i
Et/D

i
t

)
+ εt, (27)

42A model with smaller RMSE values demonstrates relatively better forecasting performance, which
correlates with a higher marginal data density. This analysis allows us to identify the specific observed
variables on which a model performs better, as indicated by its lower RMSE.
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where ∆xit+h is the cumulative change in the target financial return from t to t + h,

P i
Et/D

i
t is the price-dividend ratio, α(h) is an intercept, γt(h) is a time fixed effect, and

β(h) represents asset return predictability at horizon h. Because the dependent variable

∆xit+h is expressed in difference from a benchmark, each estimated β(h) is in cumulative

effects from t to t+ h.

Figure 1: Predictability of asset returns, models vs. data

The gray areas are obtained by estimating Equation 27 on the sample data (implying i = 1), while each line is
obtained on the panel version of Equation 27. We simulate data from each model, sampling i = 100 chains of size
198 periods to reach an asymptotic estimation of β(h). Because residuals exhibit serial correlation as documented

by Òscar Jordà (2005), confidence intervals are built on the Newey-West heteroscedasticity and autocorrelation
consistent (HAC) estimator. Data for dividends are given in appendix B.
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Figure 1 reports the estimates for different specifications of the utility function as well

as the confidence intervals of the coefficients estimated on the data. As already docu-

mented in the literature, (i) the regression coefficients associated with cumulative returns

and excess returns are negative, (ii) their absolute values increase with the horizon, and

(iii) their predictability increases as the horizon increases.43 We will next evaluate how

well each model captures the observed predictability of asset returns. Notably, models

with habits are able to capture the predictability of asset returns over 9 quarters, while

the short-horizon predictions made by the Epstein-Zin-Weil (EZW) and power utility

models fall outside the confidence intervals reported in the left panel of Figure 1.

The relation between the current price–dividend ratio and future stock returns may

be due to the predictability of the risk-free rate, the equity premium, or both. As the

data suggest that predictability is driven only by the equity premium, we report on the

right-hand side of Figure 1 the local projection results when the equity premium is the

43This last pattern can be observed from the upper bound of the confidence interval going below zero
for three periods and remaining there for several periods. Confidence intervals exclude zero at a 68%
confidence level.
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dependent variable. The results confirm that the time variation in conditional expected

excess returns implies a significant degree of predictability. The gap in terms of replicating

time variation in conditional equity returns is mainly driven by the equity premium:

habit formation shows that it is possible to reproduce the quantitative magnitude of

these coefficients when other formulations do not.

Therefore, one can conclude that models with habits also perform better in capturing

the predictability of asset returns.

4.5 A Historical Path of the Optimal Carbon Price in the United States

The advantage of using Bayesian estimation is that the model can replicate the histori-

cal path of the observable variables.44 In particular, we can answer the following question:

what would the optimal carbon price vE have been in the United States from 1973Q3 to

2023Q1 had this optimal policy been implemented? Figure 2 reports the historical time

path of an optimal carbon tax for the US economy.45

Therefore, our optimal carbon price as reported in Figure 2 is procyclical for all types

of utility considered. It is not new that optimal carbon taxes are procyclical. Because

the social cost of carbon is the present value of future marginal climate damages, its pro-

cyclicality is driven by two complementary forces. The first factor is the marginal climate

damages, which are proportional to output and thus inherently procyclical (see Golosov

et al., 2014). The second factor is the behavior of the SDF, regardless of the preference

type. When consumption is low, investors anticipate higher future consumption growth,

leading to a decrease in the SDF, which reduces the weight placed on future marginal

damages. As a result, the carbon price declines.

Given a power utility function as employed by Heutel (2012), Figure 2 shows that

the optimal carbon tax is indeed procyclical, but less intense than under recursive utility

with habits. By shutting off different mechanisms in the utility function, one can note

that the procyclical nature of the social cost of carbon is shaped by consumption habits,

thus corroborating the finding in the moment analysis, in section 3. Indeed, habits, as

discussed by Abel (1990) and Campbell and Cochrane (1999), typically embed significant

time variation in the stochastic discount factor. This utility function makes the agent

more risk-averse in bad times, when consumption is low relative to its past history, than in

44Once the sequence of shocks has been obtained from the filtering phase of the estimation, it is then
possible to simulate the model by feeding it with the sequence of shocks that replicate the sample. We
can then also construct counterfactual scenarios when the calibration or equations are changed.

45Note that we provide a robustness check of this exercise in Section C.1 of the online appendix, based
on the model estimated via SMM, fed with Solow residuals.
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Figure 2: Historical path of the social cost of carbon in the United States under
alternative preferences

The simulated path is expressed in levels. The blue shaded area is the parametric uncertainty at the 95%
confidence level, drawn from 500 Metropolis-Hastings random iterations. The blue line represents the
mean of these 500 simulated paths. The gray shaded areas are NBER-dated recessions in the U.S. The
carbon tax is expressed in U.S. dollars per ton of CO2 from the model via the expression 1, 000 vE,t. To
derive the path under alternative preferences, each channel (IES/RA separation and habit formation) is
deactivated, reducing the preferences to standard power utility in the simplest case.
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good times, when consumption is high. The procyclical nature of the stochastic discount

factor is particularly reinforced in bad times with habits, generating a large decline in

the social cost of carbon during recessions.

4.6 The Amplification Channel of Fluctuating Uncertainty on Variations of the Carbon

Price

Why should the carbon price be higher in a model capable of generating a substantial

equity premium? While the climate risk literature has connected these aspects on artificial

series, it has not evaluated this question using observed data. Our framework can be

utilized to track real-time uncertainty and its quantitative effect on the optimal carbon

price.

In traditional consumption-based asset pricing models, uncertainty is driven entirely

by exogenous shocks, such as stochastic TFP, which cause unexpected shifts in funda-
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mental payoffs like financial assets and consumption, thereby generating risk premia. In

this section, we ask how this uncertainty also shapes the carbon price. To understand

the mechanism, we build on recent work by Mumtaz and Theodoridis (2020) on uncer-

tainty. Exploiting the recursive form of the solution of our model, the one-step-ahead

expectation can be written as:46

EtvEt+1 = ω
(
Hzzt + hσσσ

2 +Hzzvart(zt) + hσσσσ
3 +Hzzzskewt(zt)

)
(28)

where zt is the state vector of the economy. The matrices Hz, Hzz, Hzzz, hσσ, and hσσσ

denote the derivatives of the system with respect to the state and/or shock vectors for

different orders and evaluated at the non-stochastic steady state, while ω is a selection

matrix47. Thus, along with the current state, zt, the higher moments of the system

vart(zt) and skewt(zt) directly affect the investor’s prediction about the future carbon

price, and these moments are time-varying due to the specification of the agents’ prefer-

ences, summarized in the SDF.

Figure 3: The role of uncertainty in shaping the price of carbon

The gray shaded areas are NBER-dated recessions in the U.S. Each simulation represents the path of
the variable with the model approximated up to a specific order of the Taylor expansion.
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In Figure 3, we disable or enable second- and third-order terms to evaluate how

risk shapes the carbon price.48 We measure this sensitivity to cyclical factors such as

46We focus on expected variables because our analysis emphasizes uncertainty, which predominantly
impacts forward-looking variables. Additionally, the recursive structure of expected variables excludes
the realization of shocks, making the discussion more straightforward.

47The term vart(zt) = Et(zt ⊗ zt) is the column-stacked covariance matrix of zt at time t and
skewt(zt) = Et(zt ⊗ zt ⊗ zt) is the column-stacked skewness matrix of zt at time t.

48In Section C.1 of the online appendix, we also provide a robustness check of the role of uncertainty
in the version of the model estimated via SMM, fed with Solow residuals. In Section D.5, we provide
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Hzzvart(zt) and Hzzzskewt(zt), as well as long-term effects such as hσσσ
2 and hσσσσ

3.

The right panel of Figure 3 investigates the endogenous volatility of the SDF. Bansal

and Yaron (2004) showed that fluctuations in uncertainty are crucial for capturing key

features of finance data. Our framework captures significant fluctuations in uncertainty,

which tends to increase during recessions.

At the first-order approximation, fluctuations in the carbon tax are procyclical, echo-

ing the findings of Heutel (2012) and Golosov et al. (2014). In a linear economy with

certainty equivalence, there is no endogenous uncertainty, causing the SDF uncertainty

on the right panel of Figure 3 to be zero. However, the influence of finance, driven by

EZWH preferences, becomes prominent in determining the carbon price at higher-order

approximations.

A second-order approximation captures the variance, vart(zt) and hσσσ
2, of the model

variables, causing the social cost of carbon to rise permanently. This rise is driven by a

precautionary motive that increases the demand for risk-free assets to smooth consump-

tion. Consequently, the risk-free rate permanently increases by a constant proportion

of the variance of consumption, referred to as the prudence effect by Van Den Bremer

and Van Der Ploeg (2021) or as precautionary savings in the asset pricing literature.

By increasing the stochastic discount factor, the future marginal values receive a higher

weight in present terms, increasing the SCC. At the second order, the model captures a

fixed level of uncertainty, as shown by the blue dotted line in the right panel of Figure 3,

primarily increasing the carbon tax through the term hσσσ
2. This explains why the dis-

tance between the blue and green lines of the left panel remains mostly constant over the

cycles.

A third-order approximation captures skewness and other higher-order moments, al-

lowing the model to account for the time-varying nature of risk premia and the impact

of uncertainty on asset and carbon prices. Uncertainty becomes time-varying, rising dur-

ing expansions and decreasing during recessions, as documented by Bansal and Yaron

(2004).49 Investors under EZW dislike uncertainty, and therefore require a higher pre-

mium in compensation. Third-order terms always contribute positively to the SCC, as

the solid red line never crosses the dashed blue one (indicating that hσσσσ
3 is relatively

the same figure with power utility. Under CARA, the SDF’s uncertainty is negligible, making risk and
the order of approximation irrelevant in determining the carbon price. Results are quantitatively and
qualitatively similar under SMM or Bayesian estimations.

49Recall that our framework is estimated using risk premia as observable variables, which can vary only
with third-order approximation. Therefore, risk fluctuations, embedded into third-order terms, reflect
realistic fluctuations in uncertainty grounded by the data.
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large). Time-varying skewness, Hzzzskewt(zt), drastically increases the procyclical nature

of the carbon tax, thus showing again how finance is important in the shaping the cyclical

nature of the carbon tax.

Overall, like Folini et al. (2024); Barnett et al. (2020), we find that uncertainty in-

creases the social cost of carbon. In a risky economy, priced accurately by a finance-

consistent SDF, the price of carbon is procyclical and increases by an average of $20
per ton of carbon, which represents a 50% increase with respect to the risk-free linear

economy.

5 Conclusion

This paper contributes to the growing literature at the intersection of finance and

climate economics by examining the role of empirically grounded discounting in deter-

mining the optimal carbon price. We develop a framework that integrates key elements

of macro-finance with components from the integrated assessment model literature.

Our findings underscore the importance of incorporating realistic financial dynamics

into climate policy models. Unlike traditional macro-finance approaches, our model in-

cludes consumption habits and is estimated on a range of asset pricing moments. This

framework captures realistic fluctuations in the stochastic discount factor (SDF), which

directly impacts the social cost of carbon (SCC). Specifically, our model estimates a

carbon price that is 32% higher and five times more procyclical than that derived from

standard power utility models. Without realistic discounting, the carbon tax would be

set too low on average and would not decrease sufficiently during recessions, leading to

an unnecessarily high economic burden in addressing environmental challenges.

Moreover, our analysis highlights the powerful role that the procyclicality of the car-

bon tax—driven by consumption habits—plays in reducing aggregate risk. This reduction

in risk dampens the precautionary savings motive among investors, leading to a higher

risk-free rate and lower risk premia.
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A Equilibrium conditions

In this section, we collect all the equation that determine the symmetric equilibrium in

our economy. Preferences are given by:

mt+1 = βEt

(
Ut+1/Et{U1−σ

t+1 }
1

1−σ

)1−θ−σ
(
xνt
xνt+1

) [
(1− β)Sθ−1

t+1 − (1−ϖ)φt+1

][
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t − (1−ϖ)φt

] (29)
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1
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(1− β)Sθ−1

t+1 +ϖφt+1

]
(30)

Ut =
[
(1− β)Sθ

t + Et{U1−σ
t+1 }θ/(1−σ)

]1/θ
(31)

Zt+1 = mZt + (1−m)εB,tCtx
−ν
t (32)

where St = εB,tCtx
−ν
t − Zt.

The production side is given by:

Yt = exp (−ζxt)AεA,t (KY,t)
α (nYHt)

1−α (33)
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The climate block reads as:

xt+1 = (1− δX)xt + ιX (et + e∗) (44)

et = (1− µt) ιE
Yt
Ht

εE,t (45)

Finally, the optimal carbon tax (in trillions per Gt CO2) is given by

VEt = Etmt+1

(
ιXν

Ct+1

xt+1

+ ιXζ (ϱt+1Yt+1 + κϕt+1IHt+1) + (1− δX)VEt+1

)
while exogenous shocks are given by ln εj,t = ρj ln εj,t−1 + ηj,t with j = {A,B,G,E,D}
and ηj,t ∼ N

(
0, std (ηj)

2), and usual asset pricing formula: PEt = Etmt+1 (PEt+1 +Dt+1),

rFt = 1/Etmt+1 and rMt+1 = (PEt+1 +Dt+1) /PEt.

B Data

Our data spans the period from 1973Q3 to 2023Q1, with the starting date limited

by the availability of CO2 emissions data beginning in 1973. The data for consumption,

production, investment, and R&D investment are taken from the Bureau of Economic

Analysis, seasonally adjusted in chained 2017 USD. Consumption is measured as expen-

ditures on nondurable goods and services. Capital investment is measured as private

fixed investment. Output is measured as GDP. Carbon emissions are measured from

energy consumption from U.S. Energy Information Administration. The price of shares

is measured by the S&P Composite Total Return Index, and dividends are measured by

the S&P 500 Dividend per share, both sourced from Standard and Poor’s. The risk-free

rate is measured by 3-month T-bills on the secondary market from the Federal Reserve

Board/Bureau of Labor Statistics.

Regarding transformations, nominal variables are converted to real terms using the

consumer price index for all items from the Bureau of Economic Analysis. Data exhibiting

a trend are expressed in growth rates through their logarithmic variations. The ex-post

equity premium is measured by the difference between the realized log variations of the

S&P index minus the risk-free rate on T-bills. The risk-free rate is deflated by subtracting

expected inflation. The price-dividend ratio is measured by the ratio between the S&P 500

price index and S&P 500 dividends. The ratio of R&D is measured by R&D investment

spending over private fixed investment.
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A Deriving the Model

A.1 The Laissez-faire or Competitive Equilibrium

We start by characterizing the laissez-faire or competitive equilibrium in the growing

economy. We next derive the stationary equilibrium and then turn to the optimal allo-

cation.

A.1.1 The Growing Economy

Stationary variables are denoted with small letters, whereas capital letters are used to

denote variables exhibiting a time trend.

Households Maximisation problem of households:

Ut =

[
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] 1
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1−σ

] 1
θ

+ λt [Tt +WtnY t + stDt +Bt − Ct − PEt(st+1 − st)− pBtBt+1]

+φt

[
Zt+1 −ϖZt − (1−ϖ)

Ct

xνt

]}
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First-order conditions:

λt =
1

xνt

[
U1−θ
t (1− β)

(
Ct

xνt
− Zt

)θ−1

− φt(1−ϖ)

]

φt = U1−θ
t β

[
Et

(
U1−σ
t+1

)] θ
1−σ

−1
Et

{[
U−σ
t+1

1

xνt+1

[
(1− β)U1−θ

t+1

(
Ct+1

xνt+1

− Zt+1

)θ−1

+ φt+1ϖ

]]}

PEt = U1−θ
t β

[
Et

(
U1−σ
t+1

)] θ
1−σ

−1
Et

[
U−σ
t+1

λt+1

λt
(PEt+1 +Dt+1)

]
pBt = βU1−θ

t

[
Et

(
U1−σ
t+1

)] θ
1−σ

−1
Et

[
U−σ
t+1

λt+1

λt

]
Stochastic discount factor:

mt+1 = βU1−θ
t

[
Et

(
U1−σ
t+1

)] θ
1−σ

−1

U−σ
t+1

(
xνt+1

xνt

)−ν

[
U1−θ
t+1 (1− β)

(
Ct+1

xν
t+1

− Zt+1

)θ−1

− φt+1(1−ϖ)

]
[
U1−θ
t (1− β)

(
Ct

xν
t
− Zt

)θ−1

− φt(1−ϖ)

]


Final good producers Maximise dividends:

Dt = Yt −WtnY t − IKt − TEtet − η1µ
η2
t Yt

such that:

Kt+1 ≤ (1− δK)Kt +

(
χ1

1− ϵ

(
IKt

Kt

)1−ϵ

+ χ2

)
Kt

Ht+1 ≤ Ht + IHt

Yt ≤ exp(−ζxt)εAt (Kt −KHt)
α (HtnY t)

1−α

IHt ≤ exp(−ζxt)κεAtK
ξ
Ht (HtnHt)

1−ξ

ii



The dynamic programming problem:

L = E0

∞∑
t=0

mt



Yt −WtnY t − IKt − TEtet − η1µ
η2
t Yt

+qt

[
(1− δ)Kt +

(
χ1

1−ϵ

(
IKt

Kt

)1−ϵ

+ χ2

)
Kt −Kt+1

]
+ϕt

[
Ht + exp(−ζxt)κεAtK

ξ
Ht (HtnHt)

1−ξ −Ht+1

]
+ϱt

[
exp(−ζxt)εAt (Kt −KHt)

α (HtnY t)
1−α − Yt

]
+VEt

[
et − (1− µt)ιE

Yt

Υt

]
First-order conditions:

TEt = VEt

η2η1µ
η2−1

t = VEtιE
1

Υt

ϕtξ
IHt

KHt

= ϱtα
Yt
KY t

qt = Etmt+1qt+1

[
(1− δK) +

χ1

1− ϵ

(
IKt+1

Kt+1

)1−ϵ

+ χ2 − χ1

(
IKt+1

Kt+1

)1−ϵ
]
+Etmt+1ϱt+1α

Yt+1

KY t+1

ϕt = Etmt+1ϕt+1

[
1 + (1− ξ)

IHt+1

Ht+1

]
+ Etmt+1ϱt+1(1− α)

Yt+1

Ht+1

ϱt = 1

Wt = ϱt(1− α)
Yt
nY t

1 = qtχ1

(
IKt

Kt

)−ϵ

Environmental externality

xt+1 = (1− δX)xt + ιX (et + e∗t )

et = (1− µt)ιE
Yt
Υt

A.2 The Stationary Economy

Given the law of motion (3), and subject to the restrictions on preferences discussed by

King et al. (1988), it is possible to derive a stationary equilibrium where all variables
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are growing at the same rate. In line with established methods in the field, we achieve a

stationary equilibrium by normalizing trended variables with the rate of labor augmenting

technological progress, denoted as Ht.

Ht+1

Ht

= 1 + exp(−ζxt)κεAtk
ξ
Htn

1−ξ
Ht

where:

γt = Ht+1/Ht

ut =

{[
(1− β)

(
ct
xνt

− zt

)θ

+ βγθt
[
Et

(
u1−σ
t+1

)] θ
1−σ

]} 1
θ

λt =
1

xνt

[
u1−θ
t (1− β)

(
ct
xνt

− zt

)θ−1

− φt(1−ϖ)

]
where λt and φt are stationary. Define: φ̃t =

φt

u1−θ
t

λt =
1

xνt
u1−θ
t

[
(1− β)

(
ct
xνt

− zt

)θ−1

− φ̃t(1−ϖ)

]

To simpify the exposition, in the main text, the scaled multiplier is denoted by φt.

τEt = vEt

η2η1µ
η2−1

t = vEtιE

ϱt = (1− η1µ
η2
t )− vEt(1− µt)ιEyt

ϕtξ
iHt

kHt

= ϱtα
yt
kY t

iHt = exp(−ζxt)κεAtk
ξ
Htn

1−ξ
Ht

ϕt = Etmt+1ϕt+1 [1 + (1− ξ)iHt+1] + Etmt+1ϱt+1(1− α)yt+1

φ̃t = βγθ−1
t

[
Et

(
u1−σ
t+1

)] θ−(1−σ)
1−σ Et

{[
u1−σ−θ
t+1

[
(1− β)

(
ct+1

xνt+1

− zt+1

)θ−1

+ φ̃t+1ϖ

]]}

pEt = Et

β (γt)θ−1 u
1−θ
t

[
Et

(
u1−σ
t+1

)] θ−(1−σ)
1−σ

uσt+1

λt+1

λt
γt (pEt+1 + dt+1)
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γtzt+1 −ϖzt − (1−ϖ)
ct
xνt

= 0

1 = qtχ1

(
iKt

kt

)−ϵ

qt = Etmt+1qt+1

[
(1− δK) +

χ1

1− ϵ

(
iKt+1

kt+1

)1−ϵ

+ χ2 − χ1

(
iKt+1

kt+1

)1−ϵ
]
+βEtmt+1ϱt+1α

yt+1

kY t+1

xt+1 = (1− δX)xt + ιX (et + e∗t )

et = (1− µt)ιEyt

γtkt+1 = (1− δK)kt +

(
χ1

1− ϵ

(
iKt

kt

)1−ϵ

+ χ2

)
kt

yt = exp(−ζxt)εAtk
α
Y tn

1−α
Y t

dt = yt − wtnY t − iKt − τEtet − η1µ
η2
t yt

wt = (1− α)
yt
nY t

where:

Υt = 𭟋Ht

Since this parameter has no effect on the model dynamics, we normalize 𭟋 to 1.

yt = ct + it + gt

The stochastic discount factor is:

mt+1 = βγθ−1
t

 ut+1[
Et

(
u1−σ
t+1

)] 1
1−σ

1−σ−θ (
xt+1

xt

)−ν

(1− β)
(

ct+1

xν
t+1

− zt+1

)θ−1

− φ̃t+1(1−ϖ)

(1− β)
(

ct
xν
t
− zt

)θ−1

− φ̃t(1−ϖ)


The dynamic system under laissez-faire Preferences

ut =

{[
(1− β)

(
ct
xνt

− zt

)θ

+ βγθt
[
Et

(
u1−σ
t+1

)] θ
1−σ

]} 1
θ

cet = Et

(
u1−σ
t+1

)

v



λt =
1

xνt
u1−θ
t

[
(1− β)

(
ct
xνt

− zt

)θ−1

− φ̃t(1−ϖ)

]

φ̃t = βγθ−1
t

[
Et

(
u1−σ
t+1

)] θ−(1−σ)
1−σ Et

{[
u1−σ−θ
t+1

[
(1− β)

(
ct+1

xνt+1

− zt+1

)θ−1

+ φ̃t+1ϖ

]]}

mt = βγθ−1
t−1

 ut[
Et−1

(
u1−σ
t

)] 1
1−σ

1−σ−θ (
xt
xt−1

)−ν

 (1− β)
(

ct
xν
t
− zt

)θ−1

− φ̃t(1−ϖ)

(1− β)
(

ct−1

xν
t−1

− zt−1

)θ−1

− φ̃t−1(1−ϖ)


γtzt+1 −ϖzt − (1−ϖ)

ct
xνt

= 0

Dividends

dt = yt − wtnY t − iKt − τEtet − η1µ
η2
t yt

wt = (1− α)
yt
nY t

Endogenous growth

iHt = exp(−ζxt)κεAtk
ξ
Htn

1−ξ
Ht

ϕt = Etmt+1ϕt+1 [1 + (1− ξ)iHt+1] + Etmt+1ϱt+1(1− α)yt+1

γt = 1 + iHt

ϕtξ
iHt

kHt

= ϱtα
yt
kY t

Production

1 = qtχ1

(
iKt

kt

)−ϵ

ϱt = (1− η1µ
η2
t )− vEt(1− µt)ιEyt

qt = Etmt+1qt+1

[
(1− δK) +

χ1

1− ϵ

(
iKt+1

kt+1

)1−ϵ

+ χ2 − χ1

(
iKt+1

kt+1

)1−ϵ
]
+Etmt+1ϱt+1α

yt+1

kY t+1

γtkt+1 = (1− δK)kt +

(
χ1

1− ϵ

(
iKt

kt

)1−ϵ

+ χ2

)
kt

yt = exp(−ζxt)εAtk
α
Y tn

1−α
Y t

Emissions

xt+1 = (1− δX)xt + ιX (et + e∗t )

et = (1− µt)ιEyt
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Market clearing

yt = ct + iKt + gt

Asset pricing implications

pEt = Et [mt+1γt (pEt+1 + dt+1)]

1

1 + rFt

= βγθ−1
t

 ut+1[
Et

(
u1−σ
t+1

)] 1
1−σ

1−σ−θ (
xt+1

xt

)−ν

(1− β)
(

ct+1

xν
t+1

− zt+1

)θ−1

− φ̃t+1(1−ϖ)

(1− β)
(

ct
xν
t
− zt

)θ−1

− φ̃t(1−ϖ)


Etept+1 = γt

pEt+1 + dt+1

pEt

− (1 + rFt)

Growth rate output

gY t = log (yt)− log (yt−1) + log γt−1

vii



A.3 The Centralized Equilibrium

A.3.1 The Growing Economy

Planner’s Problem

maxUt =

{[
(1− β)

(
Ctx

−ν
t − Zt

)θ
+ β

[
Et

(
U1−σ
t+1

)] θ
1−σ

] 1
θ

+ λt [(1− η1µ
η2
t )Yt − Ct − IKt −Gt]

+ φt

[
Zt+1 −ϖZt − (1−ϖ)Ctx

−ν
t

]
+ λtqt

[
(1− δK)Kt +

(
χ1

1− ϵ

(
IKt

Kt

)1−ϵ

+ χ2

)
Kt −Kt+1

]
+ λtϕt

[
Ht + exp(−ζxt)κεAtK

ξ
Ht (HtnHt)

1−ξ −Ht+1

]
+ λtϱt

[
exp(−ζxt)εAt (Kt −KHt)

α (HtnY t)
1−α − Yt

]
+ VXtλt [xt+1 − (1− δX)xt − ιX (et + e∗t )]

+VEtλt

[
et − (1− µt)ιE

Yt
Υt

]}
First-order conditions:

ϱt = (1− η1µ
η2
t )− VEt(1− µt)ιE

Yt
Υt

VEt = ιXVXt

η2η1µ
η2−1

t = VEtιE
1

Υt

λt =
1

xνt

[
U1−θ
t (1− β)

(
Ct

xνt
− Zt

)θ−1

− φt(1−ϖ)

]

VXt = Etmt+1

{
ν
Ct+1

xt+1

+ ζϱt+1Yt+1 + ζϕt+1IHt+1 + VXt+1(1− δX)

}

φt = U1−θ
t β

[
Et

(
U1−σ
t+1

)] θ
1−σ

−1
Et

{[
U−σ
t+1

[
(1− β)U1−θ

t+1

(
Ct+1

xνt+1

− Zt+1

)θ−1

+ φt+1ϖ

]]}

qt = Etmt+1

{
qt+1

[
(1− δK) +

χ1

1− ϵ

(
IKt+1

Kt+1

)1−ϵ

+ χ2 − χ1

(
IKt+1

Kt+1

)1−ϵ
]
+ ϱt+1α

Yt+1

KY t+1

}

ϕt = Etmt+1

{
ϕt+1

[
1 + (1− ξ)

IHt+1

Ht+1

]
+ ϱt+1(1− α)

Yt+1

Ht+1

}
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ϕtξ
IHt

KHt

= ϱtα
Yt
KY t

1 = qtχ1

(
IKt

Kt

)−ϵ

A.3.2 The stationary system in the centralized or first-best equilibrium

Preferences

ut =
{[

(1− β)(ctx
−ν
t − zt)

θ + βγθt
[
Et

(
u1−σ
t+1

)] θ
1−σ

]} 1
θ

cet = Et

(
u1−σ
t+1

)
λt = u1−θ

t x−ν
t

[
(1− β)(ct − zt)

θ−1 − φ̃t(1−ϖ)
]

φ̃t = βγθ−1
t

[
Et

(
u1−σ
t+1

)] θ−(1−σ)
1−σ Et

{[
u1−σ−θ
t+1

[
(1− β)(ct+1x

−υ
t+1 − zt+1)

θ−1 + φ̃t+1ϖ
]]}

γtzt+1 −ϖzt − (1−ϖ)ctx
−ν
t = 0

Climate

vXt = Etγtmt+1

{
ν
ct+1

xt+1

+ ζϱt+1yt+1 + ζϕt+1iHt+1 + vXt+1(1− δX)

}
vEtιE = η2η1µ

η2−1
t

vXtιX = vEt

et = (1− µt)ιEyt

xt+1 = (1− δX)xt + ιX (et + e∗t )

Endogenous growth

iHt = exp(−ζxt)κεAtk
ξ
Ht (nHt)

1−ξ

ϕt = Etmt+1ϕt+1 [1 + (1− ξ)iHt+1] + Etmt+1ϱt+1(1− α)yt+1

γt = 1 + iHt

ϕtξ
iHt

kHt

= ϱtα
yt
kY t

Production

ϱt = 1− η1µ
η2
t − vEt(1− µt)ιE
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1 = qtχ1

(
iKt

kt

)−ϵ

qt = Etmt+1qt+1

[
(1− δK) +

χ1

1− ϵ

(
iKt+1

kt+1

)1−ϵ

+ χ2 − χ1

(
iKt+1

kt+1

)1−ϵ
]
+Etmt+1ϱt+1α

yt+1

kY t+1

γtkt+1 = (1− δK)kt +

(
χ1

1− ϵ

(
iKt

kt

)1−ϵ

+ χ2

)
kt

yt = exp(−ζxt)εAt (kt − kHt)
α n1−α

Y t

kt = kY t + kHt

Market clearing

yt (1− η1µ
η2
t ) = ct + iKt + gt

A.4 Optimal Tax in the Laissez-Faire Equilibrium

In the decentralized equilibrium, in the stationary equilibrium, we have that:

τEt = vEt

η2η1µ
η2−1

t = vEtιE

In the absence of environmental policy, i.e. τEt = 0, the price of CO2 emissions vEt is

zero, which leads firms to choose a zero abatement policy µt = 0. The allocation obtained

by the social planner can be achieved in the decentralized equilibrium by setting:

τEt = vXtιX

where:

vXt = Etγtmt+1

{
ν
ct+1

xt+1

+ ζϱt+1yt+1 + ζϕt+1iHt+1 + vXt+1(1− δX)

}
When the tax is set to its optimal level, the allocation in the laissez-faire equilibrium and

in the centralized problem coincide as the set of equations characterizing the two equilibria

are identical in this case. By setting the tax to its optimal level, the environmental policy

can restore the first-best allocation.
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B Data

B.1 Time Path of the Sample

All the data employed in the paper are reported in Figure 4, while sources are documented

in Section B of the paper.

Figure 4: Transformed data used in the SMM estimation, Bayesian estimation and
for return predictability
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B.2 Testing the Presence of a Trend in US Carbon Dioxide Emissions Growth

To assess the presence of a deterministic trend in key macroeconomic variables, we esti-

mated the following ordinary least squares (OLS) regression for each variable Xt:

xi



∆ lnXt = α + ϵt

where ∆ lnXt represents the first difference of the natural logarithm of the variable

Xt (i.e., the growth rate of Xt), α is the intercept capturing the average growth rate, and

ϵt is the error term. The variables considered are GDP growth (∆ lnYt), consumption

growth (∆ lnCt), investment growth (∆ ln It), and emissions growth (∆ lnEt).

The purpose of this regression is to test whether the average growth rate (α) of

each variable is significantly different from zero. If α is significantly different from zero,

it suggests the presence of a deterministic trend in the variable. Conversely, if α is not

significantly different from zero, the variable can be considered stationary over the sample

period.

Table VII: Testing the significance of a trend

This table presents the results of the OLS regression ∆ lnXt = α+ ϵt for

GDP growth (∆ lnYt), consumption growth (∆ lnCt), investment growth

(∆ ln It), and emissions growth (∆ lnEt). The coefficients (α), standard

errors (SE), t-statistics (tStat), and p-values (pVal) are reported.

α̂ SE t-Stat p-Value

GDP growth ∆ lnY 0.651 0.078 8.319 0.000
Consumption growth ∆ lnC 0.643 0.072 8.932 0.000
Investment growth ∆ ln I 1.014 0.151 6.718 0.000
Emissions growth ∆ ln e -0.010 0.177 -0.040 0.969

The OLS regression results in the table above indicate that the average growth rates

(α) for GDP, consumption, and investment are all significantly different from zero, with

p-values less than 0.01. This suggests that these variables exhibit a deterministic trend

over the sample period from 1973Q3 to 2023Q1.

In contrast, emissions growth (∆ lnEt) has a coefficient α = −0.01 that is not sig-

nificantly different from zero (t-statistic = -0.04, p-value = 0.969). This suggests that

emissions growth does not exhibit a deterministic trend and can be considered stationary

over the sample period.

These findings support the assumption in our model that emissions is stationary, while

GDP, consumption, and investment exhibit trends.
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C Additional Results to the Moment Matching Ex-

ercise

C.1 Pro-cyclicality of the Carbon Tax with Solow Residuals

To assess whether the carbon tax is pro-cyclical in the version of the economy with

one exogenous source of fluctuations and parameters estimated from SMM, one can use

the Solow residual approach from Jermann and Quadrini (2012). We use a production

function to extract the empirical Solow residuals, logSRt, using data on output, hours

worked, and investment:

logSRt = log Yt − α logKt − (1− α) logNt, (C.1)

A time series for logAt is then obtained by detrending the empirical Solow residuals

using a linear trend with data from 1973 to 2023 to obtain a measure that is adjusted for

growth:

logAt = logSRt − (1− α) log(Γt), (C.2)

Finally, using OLS, one can capture persistence by estimating ρA and εt:

logAt = ρA logAt−1 + εt. (C.3)

In this expression, εt represents empirical white noise Solow residuals that are consistent

with US data. By feeding our model estimated with SMM, we obtain Figure 5. The left

panel provides the path of the carbon tax under the Solow residuals with the CARA utility

function, while the right panel (Panel B) provides the path under EZWH preferences.

This quantitative exercise us to provide a robustness check to two facts that we have

documented in the paper.
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Figure 5: Historical variations in the carbon tax simulated by the method of the
Solow residual

The gray shaded areas represent NBER-dated recessions in the U.S. Each simulation represents the path of the variable

with the model approximated up to a specific order of the Taylor expansion. To obtain the path under the power utility

in the left panel, the IES/RA separation and habit formation are disabled.
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First, one can observe the amplified pro-cyclicality of the carbon tax under realistic

discounting brought by the finance part of the model, as discussed in subsection 4.5.

Under power utility, the carbon tax exhibits relatively low cyclicality, remaining very

stable over time but still marginally co-moving with the economic cycle. This finding

aligns with the usual literature, such as Heutel (2012) and Golosov et al. (2014). In

contrast, with realistic discounting, the cyclical nature of the carbon tax is exacerbated

by the finance block. It increases up to $100 during the expansion driven by the Tech

bubble in the 2000s but falls to $20 during the COVID-19 outbreak.

Second, as discussed in subsection 4.6, uncertainty mechanically raises the carbon

tax. The Solow residual corroborates this finding. In the linear economy with certainty

equivalence, there is significant procyclicality of the carbon tax under a finance-consistent

utility function. The order of approximation, through precautionary saving, increases the

risk-free rate and hence the present value of future damages. Consequently, this boosts

the value of the carbon tax, as underlined by Folini et al. (2024) and Barnett et al. (2020).

In contrast, under power utility, the order of approximation does not drastically change

the price of carbon nor its cyclical nature.
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C.2 Identification

To ensure robust parameter identification, we carefully explore the parameter space

around the minimum point of the objective function. This approach involves examin-

ing the shape of the objective function to assess how sensitive the model is to changes in

the parameters. By doing so, we can identify well-behaved regions of the parameter space

and ensure that our estimates are not the result of local minima or poorly conditioned

areas. This method of exploring the parameter space provides insight into the reliability

of the estimated parameters and how they influence the model’s ability to match the

target moments. It also serves as a diagnostic tool to ensure that the model is properly

specified and capable of generating realistic financial and economic dynamics.

Figure 6: Identification of the SMM model for each estimated parameter
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Figure 6 presents the objective function for each parameter, along with the estimated

value indicated by a red dot. First, our estimates correspond to a global minimum of

the objective function. By examining the changes in the objective function, it becomes

clear which parameters are most crucial for matching the model to the data. The three

most important parameters are the discount factor β, the persistence of productivity

ρA, and the degree of habit formation ϖ. While habit formation proves to be highly

xv



informative, it is worth noting that the parameters related to the early resolution of

uncertainty contribute much less to reducing the distance between the model and data

moments.

C.3 Sensitivity analysis to carbon lifetime

Does the carbon lifetime matter in the determination of our results? The lifetime

of carbon is a contentious issue in Integrated Assessment Models (IAMs), as climate

models have undergone several re-assessments of the carbon cycle. These re-assessments

have generally resulted in longer estimated lifetimes of carbon. While our framework for

climate is necessarily simplified to obtain an analytical expression for the price of carbon,

we can analyze whether our core results hold under longer carbon lifetimes, which may

be more consistent with realistic carbon cycle models.

Our main calibration assumes a 120-year carbon lifetime, but we also consider sce-

narios with a 139-year lifetime, as in Nordhaus (1991), and even a 200-year lifetime.

Table VIII: Sensitivity of Moments under Laissez-Faire (LFP) vs. Carbon Price
(CBP) Policy to Alternative Carbon Decay Rates

This table compares the moments in the Laissez-Faire (LFP) equilibrium and the economy under the optimal carbon policy
(CBP) across different carbon decay rates. All moments are reported on a quarterly basis. ĉ denotes the log deviation of
consumption from the steady state, rF the risk-free rate, ep the equity premium (rM − rF ), vE the effective carbon tax
expressed in $ per tCO2 (multiplied by a factor of 1,000), and cov(v̂E , ĉ)/V(ĉ) is measured by the coefficient β estimated
in the OLS regression v̂E = α + βĉ + ϵt. Each moment is computed using 200 parallel chains with 200 observations per
chain. To ensure comparability, all versions exhibit the same marginal utility loss νc/x by adjusting ν.

std(100 ĉ) E(100 rF ) E(100 ep) E(1000 vE) std(1000 vE)
cov(v̂E ,ĉ)

V(ĉ)

LFP [CBP ] LFP [CBP ] LFP [CBP ] LFP [CBP ] LFP [CBP ] LFP [CBP ]

120 years (baseline) 4.75 [4.48 ] 0.09 [0.35 ] 1.79 [1.53 ] 0.00 [72.3 ] 0.00 [15.7 ] 0.00 [4.95 ]
139 years 4.74 [4.45 ] 0.08 [0.34 ] 1.78 [1.53 ] 0.00 [72.8 ] 0.00 [15.8 ] 0.00 [5.02 ]
200 years 4.77 [4.38 ] 0.06 [0.33 ] 1.69 [1.51 ] 0.00 [72.0 ] 0.00 [15.6 ] 0.00 [5.25 ]

As reported in the table, a longer carbon lifetime increases climate risk, as the economy

will suffer longer from the presence of carbon in the atmosphere. In response, investors

increase their precautionary savings motive, boosting their demand for safe assets to

smooth consumption, which explains the observed decrease in the risk-free interest rate.

In contrast, the risk premium is reduced. The increase in climate damages decreases

the correlation between stock market returns and consumption. As a result, the risk of

holding a risky asset diminishes during recessions, leading to a lower premium.

On the environmental side, the marginal damages of carbon increase, calling for a

higher SCC when the carbon lifetime is extended.
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Finally, regarding the robustness of the main asset pricing effect, the integration of

macro-finance with the carbon tax remains relatively stable, regardless of the carbon

decay rate.

D Additional Results from Bayesian Estimation

D.1 Assessing Long-Run Growth Consistency with Empirical Evidence

To evaluate whether our model generates long-run growth consistent with empirical

evidence, we utilize the Christiano-Fitzgerald bandpass filter to separate the long-run

component from the business cycle component. Specifically, we filter out fluctuations

lying between 2 and 32 quarters from the consumption data. The remaining component

is interpreted as the medium/long-term trend of the data. This section is based on the

work of Kung and Schmid (2015) that is aimed to include a medium term component

into an otherwise asset pricing model, recognized in this literature as long run risk.

Figure 7 presents the filtered data. The blue line represents the low-frequency compo-

nent of the data (with the left axis), while the orange line (with the right axis) depicts γt,

the long-term growth component generated by our endogenous growth model. Although

these series do not correspond exactly in their definitions, comparing them allows us to

assess their relationship.

From the figure, we observe that both series exhibit similar magnitudes in their fluctu-

ations. The correlation between the two series is also high at 40%, indicating significant

comovement. Quantitatively, the size of their fluctuations is quite similar, suggesting

that the long-term growth generated by our model aligns well with the empirical long-

run trend.

Overall, the analysis indicates that the model’s endogenous growth mechanism is capa-

ble of capturing long-term growth trends observed in the data, supporting the robustness

of the model in reflecting empirical long-term economic dynamics.

D.2 Time Path of the Carbon Stock

This section discusses the path of the carbon tax in the Bayesian estimation. Similar

paths can be obtained using SMM as the methodologies are similar.

Figure 8 shows the time path of the carbon stock from before the sample starts in

1973 (first dot in green or red lines) to the end of the simulations (second dot in green/red

lines). All our simulations and analyses rely on sampling between these two dots.
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Figure 7: Comparison of Long-Run Consumption Trends between Model and Data

This figure compares the low-frequency component of consumption data, extracted using the Christiano-
Fitzgerald bandpass filter (blue line with left axis), with the long-term growth component generated by
the model, γ (orange line with right axis). The blue line represents the empirical trend, while the orange
line captures long run risk.
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To accommodate perturbation methods with the trend effect related to the carbon

stock, which are crucial in the integrated assessment literature, we use perturbation

methods in the long-run economy (at steady state). However, we initialize such that

the anthropogenic carbon stock is about 120 Gt in 1973, consistent with the laissez-faire

data.

To obtain initial conditions in SMM/Bayesian estimation that are consistent with the

distribution of shocks and the nonlinear effects on the unconditional mean of the variable,

we pre-sample 200 parallel chains of size 50 periods and use the mean from the simulation

as the initial condition (the first dot). Note that the stock of carbon is initialized to 60

Gt in 1960 as reported in Figure 8, which through our sampling method, yield 120 Gt of

carbon in 1973 as mentioned in the paper.

Because the initial carbon stock is below its steady state, the stock of carbon will grad-

ually rise, consistent with IPCC estimates, and provide a warming trajectory consistent

with world data.

At the end of the sample period (the last dot), our framework, adjusted for risk

(unlike IAM models), can be used to simulate and make out-of-sample projections. These

projections can include any financial variables such as risk premia and stochastic discount
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Figure 8: Time Path of Carbon Stock under Carbon Price and Laissez-Faire Policies

The figure reports the time path of the carbon stock (anthropogenic stock without pre-industrial stock)
from 1960 to 2100 under carbon price and laissez-faire policies. The paths are simulated with estimated
shocks using Bayesian techniques. Each dot delimits the time period of our sample, on which all our
analysis is based.
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D.3 Posterior Distributions for the Baseline Model

In this section, we analyze the prior versus posterior distributions of the parameters for

the EZWH model. Figure 9 illustrates the comparison, with prior distributions depicted

as dotted black lines and posterior distributions shown in blue.

Overall, the parameters are well identified, as evidenced by the clear divergence be-

tween the prior and posterior distributions. This divergence indicates that the data

provided significant information to update the posterior distributions from the priors.

Some parameters are particularly well-informed by the data, as reflected by their

narrow posterior distributions. These parameters exhibit high precision, suggesting that

the model fit deteriorates substantially when these parameters deviate from their posterior

means.

The parameter for the discount factor is an exception; while its posterior mean has

shifted from the prior, its standard deviation has remained similar. This indicates that

the data were less informative for this parameter compared to others.

The results demonstrate the model’s capability to use empirical data effectively, thus

reinforcing the reliability and robustness of the EZWH model in capturing the dynamics

of the studied economic environment.
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Figure 9: Prior vs. Posterior Distributions for EZWH Model Parameters

This figure compares the prior (dotted black lines) and posterior (blue lines) distributions of the EZWH
model parameters. The data’s informativeness is highlighted by the shift and narrowing of the posterior
distributions compared to the priors.
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D.4 Estimated Parameters under Alternative Preferences

Table IX reports the estimated parameters using Bayesian techniques. Note that all

prior specifications are the same across different models, while the last line of the table

reports the marginal data density, a measure of the relative fit of each model for a given

sample. This is discussed further in the paper concerning the empirical dominance of

habit models.

In terms of estimated shocks, each model provides very similar structures for au-

toregressive stochastic processes. Models with habits tend to exhibit relatively higher

persistence of shocks, which can be explained by the consumption smoothing effects.

The latter tends to make agents more sensitive to fluctuations in the marginal utility of

consumption, attenuating in turn the macro volatility generated by this class of prefer-

ences. Therefore, it commands relatively higher persistence of shocks to generate sufficient

volatility of consumption.

In terms of capital intensity in R&D, each model exhibits differences, with habits

typically showing much lower values than recursive and power utility. Habits create

endogenous persistence, and therefore require relatively less capital to create sufficient
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time variation in long-run risk. The growth, as well as the discount, are relatively different

between CRRA and other versions. The CRRA accommodates low sensitivity to risk,

and therefore a small precautionary motive, by a relatively high risk aversion coefficient.

As our model includes growth, a high σ affects the discount factor, which would increase

the steady-state interest rate. The model accommodates this by lowering the steady-state

growth and increasing the discount factor for CRRA.

Table IX: Prior and Posterior distributions of structural parameters under alter-
native utility functions.

This table reports the means and the 5th and 95th percentiles of the posterior distributions drawn from eight parallel
Markov chain Monte Carlo chains of 10,000 iterations each. The sampler employed to draw the posterior distributions is
the Metropolis-Hastings algorithm with a jump scale factor to match an average acceptance rate close to 25–30 percent
for each chain. B denotes the Beta, IG2 the Inverse Gamma (type 2), IG the Inverse Gamma (type 1), G the Gamma.

Prior Posterior Distribution Mean [5%:95%]
Shape[Mean;Std] EZWH EZW HABITS CRRA

Panel A: Shock processes
TFP std(ηAt) IG2[0.001;0.0033] 0.013 [0.012:0.014] 0.011 [0.011:0.012] 0.012 [0.011:0.013] 0.013 [0.012:0.014]
Pref. std(ηBt) IG2[0.001;0.0033] 0.009 [0.009:0.010] 0.016 [0.01:0.018] 0.009 [0.008:0.010] 0.013 [0.012:0.014]
Dividend std(ηDt) IG2[0.001;0.0033] 0.094 [0.090:0.101] 0.087 [0.081:0.090] 0.098 [0.091:0.106] 0.090 [0.088:0.093]
Emission std(ηEt) IG2[0.001;0.0033] 0.022 [0.020:0.024] 0.023 [0.020:0.025] 0.023 [0.021:0.024] 0.022 [0.020:0.024]
Spending std(ηGt) IG2[0.001;0.0033] 0.024 [0.019:0.028] 0.039 [0.033:0.044] 0.016 [0.014:0.019] 0.052 [0.048:0.055]
TFP AR ρA B[0.5;0.2] 0.975 [0.967:0.984] 0.983 [0.975:0.989] 0.993 [0.993:0.990] 0.957 [0.951:0.964]
Pref. AR ρC B[0.5;0.2] 0.952 [0.940:0.965] 0.669 [0.576:0.727] 0.939 [0.926:0.952] 0.730 [0.710:0.749]
Emissions AR ρE B[0.5;0.2] 0.963 [0.927:0.987] 0.974 [0.956:0.989] 0.987 [0.980:0.993] 0.893 [0.885:0.900]
Sprending AR ρG B[0.5;0.2] 0.748 [0.717:0.782] 0.890 [0.848:0.922] 0.700 [0.679:0.722] 0.869 [0.849:0.889]

Panel B: Structural parameters
Capital in R&D ξ B[0.1;0.04] 0.074 [0.050:0.100] 0.151 [0.118:0.193] 0.042 [0.026:0.057] 0.161 [0.137:0.186]
Ss growth g G[0.01;0.001] 0.006 [0.005:0.007] 0.006 [0.005:0.004] 0.007 [0.007:0.008] 0.004 [0.004:0.005]
Discount factor β B[0.985;0.001] 0.983 [0.982:0.985] 0.987 [0.985:0.989] 0.984 [0.983:0.986] 0.988 [0.987:0.989]
Investment cost ϵ G[5;0.5] 2.405 [2.382:2.436] 3.967 [3.602:4.412] 2.560 [2.542:2.576] 4.231 [4.214:4.249]
Capital depr. δK B[0.01;0.005] 0.010 [0.008:0.013] 0.013 [0.006:0.018] 0.015 [0.013:0.018] 0.037 [0.033:0.040]
Habit smoothing ϖ B[0.5;0.08] 0.952 [0.939:0.962] - 0.906 [0.892:0.917] -
Utility curvature θ N [0;0.1] 0.201 [0.104:0.297] -0.334 [-0.373:-0.295] - -
Risk aversion σ IG[4;3] 2.884 [2.857:2.913] 92.46 [88.354:95.756] 1.739 [1.701:1.774] 3.473 [3.458:3.488]

Log marginal data density -1 788.27 -1 824.62 -1 789.88 -1 847.20

Regarding investment curvature, models with habits generate relatively more con-

sumption smoothing, which lowers macroeconomic volatility. They require a lower invest-

ment cost to capture fluctuations in investment, while competing formulations require a

higher parameter to sufficiently reduce the volatility of investment. Regarding capital

depreciation, the CRRA provides a relatively large capital depreciation.

Regarding the degree of slow-moving habits, the habit model alone requires a lower

coefficient to generate a stronger degree to match risk premia and the risk-free rate. In-

deed, a smaller degree of habits implies increased sensitivity to consumption fluctuations

and amplifies risk aversion during economic downturns, leading to higher demand for risk
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compensation and precautionary savings. Because EZWH comprises two complemen-

tary mechanisms to generate sensitivity to risk, it requires relatively less consumption

smoothing (from consumption habits) and less disutility from uncertainty (from recur-

sive preferences). In contrast, EZW requires a much larger risk aversion coefficient, as

in Rudebusch and Swanson (2012) and Basu and Bundick (2017). This typically oc-

curs in perturbation methods, unlike projection methods, as perturbations provide an

approximation up to a certain order, neglecting in turn all other nonlinearity of larger

orders.

D.5 Endogenous Uncertainty and Carbon Pricing under a CRRA Utility Function

The provided figure compares the expected carbon tax and the stochastic discount factor

(SDF) uncertainty for two models: EZWH (Epstein-Zin preferences with habit formation)

and CARA (Constant Absolute Risk Aversion) preferences, across different orders of

approximation (first, second, and third). This comparison highlights the impact of higher-

order terms and endogenous uncertainty on the carbon tax.

The left panels illustrate the expected carbon tax (EtτEt+1) over time, while the

right panels depict the SDF’s uncertainty (Et(mt+1 − Emt+1)
2) over the same period.

Different lines represent different orders of approximation (first, second, and third). In

the EZWH model (top panels), the expected carbon tax is highly pro-cyclical, especially

at higher-order approximations. This is evidenced by the significant increase in the

carbon tax during economic expansions (e.g., the tech bubble in the 2000s) and its sharp

decline during recessions (e.g., the 2008 financial crisis and the COVID-19 pandemic).

In contrast, the CARA model (bottom panels) shows relatively stable carbon tax levels

with small fluctuations across all orders of approximation, indicating less sensitivity to

uncertainty.

At the first-order approximation, both models show some level of pro-cyclicality, but

the effect is minimal. The second-order approximation introduces the variance of the

state variables (vart(zt) and hσσσ
2), causing a permanent increase in the carbon tax due

to the precautionary saving motive and prudence effect. The third-order approximation

captures skewness and other higher-order moments, leading to substantial time-varying

risk premia. In the EZWH model, this results in a more pronounced pro-cyclicality of

the carbon tax. The right panels highlight the endogenous uncertainty of the SDF. In

the EZWH model, higher-order approximations significantly increase the time variation

of SDF’s uncertainty, aligning with the notion that fluctuations in uncertainty are critical
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Figure 10: The Role of Uncertainty in Shaping the Price of Carbon

The gray shaded areas are NBER-dated recessions in the U.S. Each simulation represents the path of
the variable with the model approximated up to a specific order of the Taylor expansion. To obtain the
path under power utility on the left panel, IES/RA separation & habits formation are disabled.
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for capturing financial data features. For the CARA model, SDF’s uncertainty remains

relatively constant, reflecting the lack of endogenous risk introduced by higher-order

terms.
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