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1 Introduction

In this paper, we analyze the key factors influencing the carbon price in the European Union Emission

Trading System (EU ETS). Our approach involves developing a macro-finance model that incorporates both

an energy sector and a non-energy final sector, along with climate and emission dynamics. Utilizing Bayesian

techniques, we non-linearly estimate the model and extract the historical shock decomposition of the carbon

price over the period studied (2013-2019). This analysis allows us to compare the theoretical social cost of

carbon (SCC)—the optimal policy benchmark—with the observed EU ETS carbon price. We introduce a

‘carbon cap rule’, a novel mechanism for emission permit supply, aligning closer to the optimal carbon price

and offering a viable policy implementation strategy.

Our findings reveal that the third phase of the EU ETS was marked with significant price volatility,

primarily due to abatement cost shocks and climate sentiment shocks. This contrasts with the stability

observed under the first-best carbon price policy. The volatility of the EU ETS’s price, which is found to be

100 times more than that of the SCC, leads to notable economic and welfare implications. Specifically, we

observe 0.22% welfare losses in consumption equivalent terms (CE) compared to the optimal policy scenario.

To mitigate these issues, we propose an optimized carbon cap rule that effectively reduces price volatility

and welfare losses to 0.03%, closely approximating the SCC benchmark.

To internalize the effects of the carbon externality, public economists have consistently advocated for

setting a carbon price equivalent to the social cost of carbon – the shadow value of CO2 emissions. Such a price

would guide the economy towards a welfare-enhancing trajectory while incentivizing emissions reduction.

Yet, determining the appropriate level of the SCC has sparked significant debates, as seen in works by Stern

(2008) and Nordhaus (2008). The correct level of the SCC remains ambiguous, given its dependence on

factors such as climate damages, climate dynamics, and the discount rate.

In response to this challenge, numerous governments and public authorities, spanning both developed

and developing nations, have adopted either a carbon tax or a cap-and-trade system. These strategies aim

to curtail emissions by either directly setting a carbon price or allowing market participants to determine

the carbon price through the trading of carbon permits. However, such policies do not ensure that the

actual carbon price will result in a first-best optimal allocation. Moreover, they might introduce market

inefficiencies due to policy structures and market designs, as discussed in Goulder (2013), Jenkins (2014),

and Benmir and Roman (2020).

The challenge faced by environmental and public authorities in establishing a carbon policy mirror
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those confronted by monetary and financial policy authorities. For example, monetary authorities determine

interest rates based on specific rules, such as the Taylor (1993) rule, rather than adhere to the natural interest

rate, which remains unobservable. A similar analogy can be made with the SCC. The SCC is fraught with

uncertainties, making it challenging to estimate and monitor over time. To address this issue, Grosjean,

Acworth, Flachsland, and Marschinski (2016) introduce the concept of a central bank of carbon, envisioned

to operate akin to a monetary central bank. This regulatory body would set the carbon cap and monitor the

implicit carbon price, taking into account business cycle fluctuations, which are emphasized as significant

in Benmir, Jaccard, and Vermandel (2020). The adoption of such a framework could potentially alleviate

market inefficiencies inherent in cap-and-trade market structures and foster a tighter alignment with the

SCC.

Theory predicts that the price of emission permits should reflect market fundamentals associated with the

marginal costs of emissions abatement (e.g. Montgomery (1972) and Rubin (1996)).6 Shifts in business-as-

usual emissions, determined by changes in demand for emission permits (e.g. weather, economic activity, and

energy intensity of their products), and shifts in abatement supply (e.g. supply of fossil fuels, the response

of consumers to fuel prices, and the cost of new technologies for production), modify market fundamentals

expectations. Predominantly, existing cap-and-trade programs target major domestic industries with high

energy consumption (e.g. electricity and heat production, cement manufacture, iron, and steel production).

Fluctuations in both emission demand and abatement supply are anticipated to be the primary sources of

uncertainty in the emission permit market.

A collection of research studies has empirically examined the significance of the theoretically suggested

permit price determinants in the California cap-and-trade program (e.g. Borenstein, Bushnell, Wolak, and

Zaragoza-Watkins (2019)) and the EU ETS (e.g. Hintermann, Peterson, and Rickels (2016), Friedrich,

Mauer, Pahle, and Tietjen (2020), and Batten, Maddox, and Young (2021)). Regarding permit demand,

a consistent observation across these studies is the prominent role of fossil fuels. Specifically, while many

of these papers highlight the significance of oil and gas, coal appears to be a less influential factor. In the

majority of these studies, economic activity and growth announcements emerge as clear price drivers too.

On the permit supply front, a challenge faced by empirical research is that several price determinants are not

directly observable. For instance, while we can observe the supply of fossil fuels, technological advancements

and innovation, along with expectations about them, remain unobservable. Consequently, changes in the

6For a recent survey of permit pricing theory, see Weitzman (1974), Hoel and Karp (2002), Newell and Pizer (2003), Wood
and Jotzo (2011), and Karp and Traeger (2018).
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costs of abatement technology have been scarcely addressed in empirical studies, even though they hold

significant importance in the theoretical forecasting of permit prices.

Operational insights from cap-and-trade programs underscore that the permit supply schedule is not

fixed, but subject to potential policy revisions. The proposed regulatory amendments in California in

20137 and the EU’s decision in 2021 regarding 2030 targets serve as instances of mid-term cap adjustments

during the periodic updates of the long-term cap. Simultaneously, due to the rigidity of most cap-and-trade

frameworks in modifying the legislated caps within each commitment phase based on current situations (e.g.

severe economic shocks), there have been discussions about supply management mechanisms that render

the cap endogenous. Some of these mechanisms have even been implemented. A notable instance of such

market intervention is the so-called EU Market Stability Reserve. While policy program interventions are

observable, sudden chances of shocks in policy are not, leading to policy uncertainty. The European cap-

and-trade program is particularly apt for analyzing the impact of policy uncertainty. Reacting to intense

demand shocks during the EU ETS’s third phase, a series of proposals and decisions were unveiled, aiming

to reinstate the stringency of the EU ETS cap. This presents us with a unique period characterized by

significant policy events and associated carbon price volatility that exceeds that of several typically volatile

agricultural commodities and currencies; see Figure 1.

7The proposed revisions cover several areas of the regulation, including allocation and distribution of allowances, see:
https://www.edf.org/sites/default/files/content/carbon-market-california-year two.pdf
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Figure 1: 2011-2022 Price Volatility (avg of annualised st. dev.)

Note: The figure was constructed using data from Bloomberg.

These fluctuations can arise from various factors, including changes in economic conditions, energy inputs,

technological advancements, and policy shifts. Crucially, the volatility in carbon prices can create uncertainty

for businesses, making it difficult for them to plan long-term investments in emission reduction strategies

(Martin, Muuls, and Wagner (2011), and European Parliament (2022)).

Our methodology is grounded in both theoretical and empirical insights and addresses a unique research

question that distinguishes it from a significant portion of the environmental economics literature, both

theoretical and empirical. Previous studies, including Fowlie (2010), Acemoglu, Aghion, Bursztyn, and

Hemous (2012), Fowlie and Perloff (2013), Aghion, Dechezleprêtre, Hemous, Martin, and Van Reenen (2016),

Pommeret and Schubert (2018), and Acemoglu, Hemous, Barrage, Aghion, et al. (2019) have examined the

effects of emission permit prices in the EU ETS impact macro-financial aggregates like clean technology

investment. Yet, there is a noticeable gap in research focusing on the fundamental determinants influencing

the implicit carbon price in the EU ETS market.8

Our contribution to the literature is twofold. First, we present a novel strategy for estimating and

8The primary emphasis of environmental and climate economists over the last decade, as outlined in the literature review
conducted by Schubert (2018) has centered on the pricing of the environmental externality and the global macroeconomic
impacts of climate change. There is a dearth of studies examining the connection between macro-finance and environmental
policy frameworks such as the interactions between carbon markets (e.g., EU ETS) and macro-financial aggregates.
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decomposing the drivers of the EU ETS. Second, we introduce a carbon cap rule that mitigates business

cycle fluctuations in relation to the estimated EU ETS policy, aligning more closely with the social cost of

carbon, which represents the first-best optimal policy.

Drawing from the empirical literature mentioned earlier, we investigate the relationship between the

EU-wide allowance price and a set of observable determinants that capture shifts in market fundamentals

of key regulated sectors and changes in economic activity across EU ETS countries. This approach allows

us to micro-found our macro-finance framework. To this end, we estimate a panel Vector Autoregression

(VAR) to analyze how the EU emission permit price reacts to key demand and supply aggregate shocks. Our

findings underscore the significance of energy as a crucial component when evaluating carbon prices. Many

of the early business cycle environmental-macro models, known as E-DSGE (e.g., Fischer and Springborn

(2011) and Heutel (2012)), which probe the connections between environmental policy and macroeconomic

aggregates, do not explicitly model energy production as an intermediary input nor they focus on impacts of

implied volatility on macro-financial aggregates and prices.9 Thus, examining the influence of energy inputs

and prices on cap-and-trade prices enhances the micro-founding of our framework. We then utilize a unique

estimation strategy to explore the factors driving the inherent market volatility within the implicit carbon

price, volatility which is highly important for business cycle welfare costs.

2 Data

We assembled our dataset by integrating multiple sources. This includes macroeconomic goods productivity

data and consumption patterns obtained from National Statistical Offices and Eurostat; energy production

and pricing information sourced from Bloomberg; carbon dioxide emissions data from the Emissions Database

for Global Atmospheric Research (EDGAR); and data on European Union Allowance (EUA) futures prices

from the Intercontinental Exchange (ICE).10 We restrict our empirical study to countries within the European

Union Emission Trading System (EU ETS) framework. Specifically, we utilize data from countries that

participated in the system from January 2013 to December 2019.11 This period aligns with phase 3 of the

EU ETS and includes the UK, which remained a part of the European carbon market until 2020. Due to

data constraints, we omit Norway and Liechtenstein, resulting in a total of 28 countries for our analysis

9However, it’s worth noting that business cycle environmental-macro frameworks have began recently to incorporate energy
as an input (e.g. Golosov, Hassler, Krusell, and Tsyvinski (2014)).

10In the EU ETS, EUAs represent the primary form of carbon allowance, granting permission to emit one tonne of carbon
dioxide (CO2) or an equivalent amount of another greenhouse gas. ”EUA Futures” refers to futures contracts based on these
allowances.

11Our study does not include the COVID-19 period.
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(including the UK).12 Below, we describe each data source used.

Goods productivity and consumption patterns From Eurostat, we have compiled data on the con-

sumption preference index for each country to capture the evolving trends in consumer behavior and pref-

erences. Additionally, we have gathered data on the industrial production index for each European state,

providing a measure of the extent of industrial activity.

Energy supply data From Bloomberg, we compile data on energy production, focusing on both the

volume of energy produced and the corresponding price levels. In line with the empirical literature discussed

earlier, we consider three critical energy sources: Brent crude oil, natural gas, and coal. This data collection

enables us to closely monitor the supply of energy, an essential determinant of the price of emission allowances.

Carbon dioxide emissions The Emissions Database for Global Atmospheric Research (EDGAR) pro-

vides estimates for emissions of the three main greenhouse gases (CO2, CH4, N2O) per sector and country.

This comprehensive dataset enables us to study emission dynamics at a high frequency.

Emission allowance prices From the Intercontinental Exchange (ICE), we retrieve data on daily carbon

futures contracts, the European Union Allowance (EUA) futures contracts. Our data collection includes the

daily prices of these EUA futures contracts, which we then convert from a daily to a monthly frequency.

By examining EUA prices, we gain valuable insights into the market’s response to innovations in abatement

technologies, a less well-observed driver of the EU ETS.

3 Empirical Results: EUA Futures Prices Responses To Macro

and Energy Supply Aggregates

In this section, we present our analysis of the impact of macroeconomic and energy supply factors on EUA

futures prices, using aggregate data from the countries included in our dataset. To estimate these effects,

we employ a panel Vector Autoregressive (VAR) model. This approach enables us to explore the behavior

of the EU-wide allowance permit price in response to various aggregate shocks.

12The EU ETS currently operates in 30 countries: the 27 EU member states plus Iceland, Liechtenstein, and Norway. The
United Kingdom left the EU on 31 January 2020 but remained subject to EU rules until 31 December 2020. In our analysis,
we consider the 27 EU member states and the United Kingdom.
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In practice, inspired by Friedrich et al. (2020), Hintermann et al. (2016), andBorenstein et al. (2019),

we consider 9 observable determinants and define the vector of endogenous variables for each country i in

month-year t containing: consumption preference index, industrial production index, inflation, oil supply,

coal supply, gas supply, oil price, coal price, and gas price. Then, we specify the following panel VAR:

Yi,t =

p∑
j=1

Ai,tYi,t−j + Γiεi,t, (1)

where Γ is a non-singular 9 x 9 structural impact matrix, and εi,t is the vector of strucutral shocks.

Figure 2 plots the cumulative impulse response functions (IRFs) of the EUA futures prices when subjected

to various macroeconomic and energy supply shocks. The solid black lines represent the estimated paths,

while the shaded blue regions indicate the confidence intervals, with the inner and outer bands representing

68% and 95% confidence levels, respectively.
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Figure 2: EUA Futures Response To Macro and Price Aggregates
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Notes: The figure shows EUA futures price cumulative impulse responses to different macroeconomic and energy price aggregates

over monthly periods.

The analysis reveals that when there is a shock in consumption preference index, it triggers a prolonged

rise in EUA futures prices. This is likely because such a shock indicates a surge in the demand for goods,

which in turn can drive up the prices of carbon allowances as industries ramp up production to meet this

demand. A shock in the industrial production index appears to have no impact on EUA futures prices,

reinforcing the limited role of unexpected change in the output of production activities as observed in the

empirical studies discussed earlier. With respect to inflation, its role in influencing EUA price movements

seems to be minimal during the period under study. This could mean that the general price level in the

economy, represented by inflation, does not have a direct and strong correlation with the fluctuations in EUA

futures prices. These observations underscore that the relationship between EUA futures prices and certain

macroeconomic indicators is limited, consistent with patterns highlighted in previous empirical research
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(Friedrich et al. (2020) and Batten et al. (2021)).

Regarding the energy drivers, we find that oil and gas significantly influence EUA futures price levels.

After an oil supply shock, the EUA futures price increases persistently, whereas it declines following a gas

supply shock. This aligns with the findings of Aatola, Ollikainen, and Toppinen (2013) and Friedrich et al.

(2020), given that energy supply based on gas is less emission-intensive than that based on oil. A similar

pattern is evident when the EUA futures prices face gas and oil price shocks (Rickels, Görlich, and Peterson

(2015)). Specifically, the futures prices tend to persistently increase after a gas price shock and decrease

after an oil price shock. The latter two findings could be further substantiated if renewable energy data were

accessible for all 28 EU countries throughout the examined period. Lastly, the outcomes remain inconclusive

when considering coal energy generation and prices, consistent with Friedrich et al. (2020).

The panel VAR analysis emphasizes the relevance of observable variables like energy generation and

prices, particularly oil and gas, corroborating existing literature that underscores the crucial role of energy

dynamics in shaping allowance prices (Friedrich et al. (2020), Hintermann et al. (2016) and Borenstein

et al. (2019)). However, this empirical analysis overlooks critical factors such as innovations in abatement

technologies and shifts in policy and regulations, which are essential for a more comprehensive understanding

of the determinants of allowance prices.

Abatement technologies, which are key to reducing emissions, play a vital role in theoretical models

of emission control and pricing, as discussed in studies like Rubin (1996), Newell and Pizer (2003), and

Schennach (2000). In these models, emission allowance prices are primarily influenced by marginal abatement

costs. However, these costs are often not directly observable. Moreover, while the advancement of low-carbon

technologies does affect marginal abatement costs, and thereby the prices, the technologies themselves and

the market’s expectations about them are not readily observable. This lack of visibility into technological

developments and market expectations poses a challenge in identifying abatement shocks and accurately

decomposing their impact on emission allowance prices within the market.

Regulatory uncertainty has been identified in the literature as another crucial factor (Koch, Grosjean,

Fuss, and Edenhofer (2016) and Deeney, Cummins, Dowling, and Smeaton (2016)). The growing attention

toward policy and regulatory changes emerges in light of the challenges in explaining recent allowance

price developments by solely relying on demand-side fundamentals (Friedrich et al. (2020)). The regulatory

landscape of these government-created markets is dynamic. Changes in political leadership, public opinion,

international agreements, and other factors can prompt shifts in the regulatory framework over time. Such
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shifts inject a level of uncertainty into the market, as participants are unable to accurately predict future

regulatory trajectories. Indeed, there is evidence that the allowance market responds to various policy and

regulatory news with fluctuations in price and price volatility (Koch et al. (2016) and Deeney et al. (2016)).

Thus, while the allowance market evidently reacts to observable shocks such as changes in energy supply

and energy prices, it is apparent it also responds to less well-observable factors. These include innovations

(shocks) in abatement technology and shifts in regulatory frameworks, which, despite their significant impact

on allowance prices, are not adequately captured in empirical studies due to their less observable nature. To

address this gap, we introduce a comprehensive model in the next section. This model integrates energy dy-

namics, as indicated by the panel VAR, with both theoretically significant abatement shocks and empirically

evident policy uncertainty shocks. Designed to provide a deeper and more insightful analysis, this model

aims to enhance our understanding of the diverse factors influencing EUA futures prices.

4 The model

We consider an infinite-horizon, closed economy comprising two production sectors (energy producers and

final firms), households, a government, and an environmental regulator. The households in this economy are

identical, infinitely lived, and collectively account for a measure of one. Energy producers generate an envi-

ronmental externality through carbon dioxide emissions (hereafter CO2 emissions). These emissions impact

the utility (or alternatively the productivity of final firms via a damage function) and subsequently affect

the welfare of the representative households. Energy producers do not internalize the broader environmental

consequences of their CO2 emissions, resulting in a market failure.

We start by outlining the climate dynamics. This is followed by a detailed description of the energy and

non-energy firms’ problems. Next, we introduce households in the model. Lastly, we delve into the roles of

the government and the environmental regulator.

4.1 Climate change and emission dynamics

Following standard integrated assessment models (IAMs) (see Nordhaus (1991) and Nordhaus and Yang

(1996)), we cast environmental externality within a macro-finance framework. A significant portion of the

accumulation of carbon dioxide and other Greenhouse Gases (GHGs) in the atmosphere is attributed to the

human activity of economic production. We describe the temperature and concentration process of carbon

dioxide in the atmosphere as follows. Firstly, the global temperature T o
t is linearly proportional to the CO2
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emission stock – the cumulative amount of emissions – as posited by Matthews, Gillett, Stott, and Zickfeld

(2009):

T o
t+1 = ζo1 (ζ

o
2Xt − T o

t ) + T o
t , (2)

with ζo1 and ζo2 chosen following Dietz and Venmans (2019).13

Second, cumulative CO2 emissions, denoted as Xt, follow a law of motion:14

Xt+1 = ηXt + ET
t + E∗

t , (3)

where Xt+1 is the concentration of gases in the atmosphere, ET
t ≥ 0 the total inflow of CO2 at time t

(both from the energy EE
t and non-energy ENE

t sectors in the EU)15, E∗
t represents the rest of the world

emissions,and 0 < η < 1 represents the persistence of CO2 emissions, which is chosen to be very close to 1,

as argued by Dietz and Venmans (2019). Anthropogenic emissions of CO2 are comprised of both energy and

non-energy emissions.

The energy emissions EE
t arise from energy production denoted as Y E

t , and are influenced by an exogenous

trend ΓX
t . This trend encapsulates the decoupling between CO2 emissions and production. The relationship

can be expressed as:

EE
t = (1− µt)φEY

E
t ΓX

t , (4)

where φEY
E
t represents the total CO2 influx resulting from production prior to the implementation of any

abatement measures. The variable 0 ≤ µt ≤ 1 represents the fraction of emissions that are mitigated (abated)

by the energy firms, while φE ≥ 0 is a carbon-intensity parameter that defines the steady-state relationship

between emissions and output.

CO2 emissions from the non-energy sector follow a similar law of motion to the emissions from the energy

sector. The key distinction lies in the fact that the non-energy sector is not subject to any environmental

policy or carbon price. Consequently, firms in the non-energy sector do not undertake any abatement efforts:

ENE
t = φNEY

NE
t ΓX

t (5)

13We observe that although variations in climate dynamics and damage modeling over the long horizon (be it à la Golosov
et al. (2014), à la Nordhaus (2017), or à la Matthews et al. (2009), among others) lead to subsequent effects on macroeconomic
aggregate equilibria, over the business cycle horizon (and under equivalent calibrations), these modeling specifications do not
result in significant changes to macroeconomic aggregate equilibria.

14To ensure convergence in the auto-regressive law of motion for the stock of emissions process, and without a loss of generality,
we deviate slightly from the transient climate response to cumulative CO2 emissions theory by setting η ̸= 1. However, we
select η to be sufficiently close to one so that Xt ≈ X0 +

∑t
i=0(E

T
i + E∗

i ).
15Where ET

t = EE
t + ENE

t .
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with φNE the emission intensity in the non-energy sectors.

4.2 Energy Firms

The energy producers aim to maximize their profit by balancing the desired levels of capital and labor,

taking into account the energy price. Energy production follows a Cobb-Douglas production function:

Ỹ E
t = εAE

t AE
t (K

E
t )αE (ΓY

t l
E
t )

1−αEΓY E

t , (6)

where KE
t represents the capital stock utilized by the energy firms with an intensity parameter αE ∈ [0, 1],

lEt denotes labor, AE
t > 0 denotes the productivity level, and εA

E

t is a total energy productivity shock that

evolves as follows:

log
(
εA

E

t

)
= ρAE log

(
εA

E

t−1

)
+ ηA

E

t , with ηA
E

t ∼ N(0, σ2
AE ).

To align with the trends in the EU’s energy and industrial production sectors, we incorporate an energy

transition trend ΓY E

t = γyE

ΓY E

t−1, enabling the capture of the energy sector’s growth rate, distinct from that

of the overall economy, denoted as γy. Consequently, the trend-corrected energy production is expressed as

Y E
t = Ỹ E

t ΓY E

t

−1
. This is further discussed in the balanced growth path (BGP) section.

Energy producers maximize profits:

ΠE
t = εpt p

E
t Y

E
t − wE

t l
E
t − IEt − Zt − τtE

E
t . (7)

The relative price of energy and the real wage are denoted by pEt and wE
t , respectively. ε

p
t is an AR(1) shock

to the energy price.

log (εpt ) = ρp log
(
εpt−1

)
+ ηpt , with ηpt ∼ N(0, σ2

p).

The function Zt = f (µt)Y
E
t represents the abatement-cost function per unite of energy production. Ad-

ditionally, τt ≥ 0 is a price on CO2 emissions, reflecting the carbon policy set forth by the environmental

regulatory authority, which will be detailed later. Investment is denoted by IEt , and the accumulation of

physical capital follows the law of motion:

KE
t+1 = (1− δ)KE

t + IEt , (8)

where δ ∈ [0, 1] is the depreciation rate of physical capital.
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The abatement-cost function is adapted from Nordhaus (2008), where f (µt) = θ1µ
θ2
t εzt . In this expres-

sion, θ1 ≥ 0 determines the steady state of the abatement, while θ2 > 0 represents the elasticity of the

abatement cost concerning the fraction of abated emissions. This function f (µt) connects the fraction of

emissions abated to the fraction of output allocated to abatement, with the price of abatement normalized to

one. Lastly, the abatement shock (εzt ) that captures market uncertainties about both abatement investment

cost and technology, evolves as follows:

log (εzt ) = ρz log
(
εzt−1

)
+ ηzt with ηzt ∼ N(0, σ2

z).

4.3 Final goods firms

Final firms aim to maximize profit by balancing the desired levels of capital, energy consumption, and

labor. Following Bachmann, Baqaee, Bayer, Kuhn, Löschel, Moll, Peichl, Pittel, and Schularick (2022),

output is generated using a Constant Elasticity of Substitution (CES) production function16, allowing for

the capture of the non-linear dynamics involved in substituting away from energy to different production

inputs.

Yt =

(
(1− χ)

1
σ (Y NE

t )
σ−1
σ + χ

1
σ Y E

t

σ−1
σ

) σ
σ−1

(9)

with

Y NE
t = εA

NE

t ANE
t (KNE

t )αNE(ΓY
t l

NE
t )1−αNE (10)

where KNE
t is the capital stock utilized by the final firms with an intensity parameter αNE ∈ [0, 1], lNE

t is non-

energy labor, ANE
t > 0 the productivity level of the non-energy final sector, σ the elasticity of substitution

between the energy and non-energy factors of production, χ the energy share in total production, ΓY E

t the

exogenous corrective trend applied to the energy sector in order to match the growth dynamics in the EU

while maintaining a BGP, and εA
NE

t a total factor productivity shock that evolves as follows:

log
(
εA

NE

t

)
= ρANE log

(
εA

NE

t−1

)
+ ηA

NE

t with ηA
NE

t ∼ N(0, σ2
ANE)

While a significant portion of the climate economics literature models environmental damages through the

16In the robustness section, we also consider the simple case of a Cobb-Douglas aggregator: Yt =

ε
Ay
t Ay

t d(T
o
t )(K

NE
t )αNE (Y E

t ΓE
t

−1
)αE (ΓY

t lNE
t )1−αNE−αE , where αE represents the energy share and αNE the non-energy capital

share.
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production side following Nordhaus (1991) in the form of Yt = Dp(T
o
t )
(
(1− χ)

1
σ (Y NE

t )
σ−1
σ + χ

1
σ Y E

t

σ−1
σ

) σ
σ−1

,

we adopt the approach of Barnett, Brock, and Hansen (2020) by incorporating environmental damages

within the utility function. Although modeling environmental damages via disutility can be isomorphic to

production damages given specific functional forms and calibration, it enables us to maintain a BGP without

imposing restrictive assumptions on the form of the damage function and its parametrization. We delve into

this point in detail in the BGP section. Furthermore, in a robustness exercise, we demonstrate that both

utility damages and production damages yield similar results.17

Final firms producers maximize profits as follows:

ΠF
t = Yt − wNE

t lNE
t − INE

t − εpt p
E
t Y

E
t . (11)

where the real wage is denoted by wNE
t and capital investment by INE

t . The accumulation of physical capital

is given by a similar law of motion to the energy firms:

KNE
t+1 = (1− δ)KNE

t + INE
t , (12)

where δ ∈ [0, 1] is the depreciation rate of physical capital.

4.4 Households

Households make consumption and savings decisions, supplying labor inelastically. They hold government

bonds and possess ownership of firms in the corporate sector, from which they receive dividends or profits.

Additionally, our households encounter climate damages, denoted as Du(T
o
t ), which result from a disutility

associated with rising temperatures, akin to the approaches in Barnett et al. (2020) and Barrage (2020).

Households maximize their life-time utility:

Et

∞∑
t=0

βtεBt u (Ct −Ht−1 −Du(T
o
t )) , (13)

where Et is the expectations operator conditioned on information at time t, β is the time discount factor,

Ct represents consumption while Ht−1 represents consumption habits, and εBt is the preference shock

log εBt = ρB log εBt−1 + ηBt with ηBt ∼ N(0, σ2
B)

17See results in Appendix C.
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Climate damages are linear in temperature:

Du(T
o
t ) = ΘT

t T
o
t

where ΘT
t is the damage sensitivity of households to temperature increase.

The law of motion for the habit stock is determined in accordance with Campbell and Cochrane (1999),

specifically as Ht−1 = hCt−1. In contrast to the approach taken by Cai and Lontzek (2019), who employ

recursive utility à la Epstein and Zin (1989) to capture long-run risk associated with climate change, we opt

for consumption habits for two reasons: i) our focus is on the business cycle (i.e., phase 3 of the EU ETS

from 2013 to 2019), where long-run risk related to climate change is not as significant as in long-run climate

policy analysis, and ii) consumption habits are demonstrated to play a crucial role in generating higher

volatility levels within business cycle fluctuations of the social cost of carbon, contrary to the recursive utility

framework (Benmir et al. (2020)), while still aligning with consumption and output volatility obsevered in

real data.

The budget constraint of the representative household is as follows:

wNE
t lNE

t + wE
t l

E
t + rtBt +ΠE

t +ΠF
t − Tt = Ct +Bt+1 (14)

where the left-hand side represents the household’s various sources of income. The total income primarily

consists of labor earnings. In each period, the household also receives returns from holding a long-term

government bond, denoted as Bt, with a return rate of rt. Additionally, since the representative household

owns firms in the corporate sector, they receive dividend income from both the energy firms ΠE
t , and the

final firms ΠF
t . On the spending front, the representative household primarily allocates its income towards

consumption goods, denoted as Ct and the purchase of long-term government bonds Bt. Additionally, it’s

assumed that the government imposes a lump-sum tax, represented by Tt.

4.5 Government and market clearing

The government funds its expenditures through tax collection. The budget constraint for the government

is given by:

Gt = Tt + τtEt. (15)
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Here Gt represents public expenditure, and Tt is a lump-sum tax. The second revenue component τtEt

represents the earnings derived from the imposition of a cost on the environmental externality. In this

expression, Et and τt denote respectively emissions and the carbon price – the price of the right to emit one

unit of CO2 emission, respectively.

As is standard in most business-cycle models, the government’s expenditure is a proportion of the total

output. The resource constraint of the economy reads as follows:

Yt = Ct + INE
t + IEt +Gt + Zt. (16)

4.6 Emission cap

Considering a cap-and-trade framework, we focus on a scenario where emissions in the economy are

regulated by an environmental authority to ensure they remain within a predefined limit, commonly known

as “the cap.” Ideally, the environmental regulator sets this cap by equating the marginal costs to the marginal

benefits of emission reduction, essentially reflecting the social cost of carbon that a social planner would pick

in a centralized economy.18 In a decentralized economy and without uncertainty, setting the carbon policy

equal to the social cost of carbon would retrieve the first-best optimal solution. However, the existence

of uncertainties in production, consumer behavior, and abatement processes presents significant challenges

in setting a fixed cap (or a comparable constant tax) at the optimal level. These uncertainties render it

challenging to accurately assess the marginal value of emission reductions in advance. In fact, it is widely

understood that policies should be conditioned on the available information (Ellerman and Wing (2003),

Jotzo and Pezzey (2007), Newell and Pizer (2008), and Doda (2016)). In an ideal scenario, policies would be

adaptive, responding to the actual occurrence of these shocks, thereby necessitating a cap that is dynamically

adjusted over time (Kollenberg and Taschini (2016) and Karp and Traeger (2023)).

In practice, setting the cap is typically a complex political process aimed at balancing environmental goals

with socio-economic considerations. As new information emerges and societal priorities shift, policymakers

may adjust the emission limits to align with these evolving conditions. These adjustments, however, can

lead to policy and regulatory uncertainties. Consequently, we treat the cap, denoted as ĒE , as an exogenous

variable, and we will outline the associated per-period quota as follows:

EE
t = Qtε

CS
t , (17)

18A complete derivation of the theoretical social cost of carbon can be found in Appendix A.
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where εCS
t evolves as:

log εCS
t = ρCS log εCS

t−1 + ηCS
t with ηCS

t ∼ N(0, σ2
CS).

The innovation εCS
t captures the policy uncertainty surrounding the cap target or corresponding shifts in

the availability of allowances. This is referred to as the climate sentiment shock.

4.7 Balanced growth

Given that the primary focus of the paper is to estimate the drivers of the carbon permit price and the

permit market, we derive the de-trended model along its balanced growth path. Additionally, we account for

the scenario where emissions and energy production exhibit growth rates different from that of the overall

output. As illustrated in Figure 3, EU energy emissions, energy production, and output all experience

distinct growth rates.

Figure 3: EU Trends in CO2 Energy Emissions, Energy Production (Electricity), and GDP Per Capita

Notes: The figure was generated utilizing data on CO2 emissions and energy production from https://ourworldindata.org/, along

with GDP per capita data sourced from FRED.
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In the context of our model, we assume that the energy sector is stationary due to the zero growth rate

observed in the data (i.e., ΓE
t = ΓY

t
−1

). The disparity in growth rates between energy emissions and output

is attributed to the introduction of a rate of green technological progress.

Consistent with the literature, macroeconomic variables are also assumed to grow along the balanced

growth path. This growth is facilitated by labor-augmenting technological progress, represented by ΓY
t . The

growth rate of this labor-augmenting technological progress is denoted by γy, where:

ΓY
t+1

ΓY
t

= γy.

We represent green technological progress in the growing economy by ΓX
t . The growth rate of this green

progress, denoted as γx, is defined as follows:

ΓX
t+1

ΓX
t

= γx.

This trend is crucial for capturing the long-term process of decoupling output growth from emission

growth. As documented by Newell, Jaffe, and Stavins (1999), this trend can be interpreted as an energy-

saving technological shift that reflects the adoption of less energy-intensive technologies in capital goods. An

improvement in this technology would result in a value for γx that is below 1. Following Nordhaus (1991),

we assume that this trend is deterministic.

Regarding climate damages, one possibility would be to follow Nordhaus (1991), where climate damages

Dp(T
o
t ) are modeled as a convex function linking temperature levels to output deterioration, expressed as

Dp(T
o
t ) = ae−btT

o
t

2

. This approach, however, presents certain balanced growth path (BGP) challenges,

particularly because our model estimation over the business cycle necessitates stationarity. One potential

solution is to correct for the damage sensitivity bt =
b

ΓY
t

2 in order to adjust it with the economy’s growth rate.

Therefore, introducing ΓY
t
2
to the damage sensitivity parameter such that Dp(T

o
t ) = ae

− b

ΓY
t

2 T o
t

2

= ae−bT o
t

2

.

ensure the existence of a BGP. This however could be problematic over the long-run as bt would be declining

overtime, which means as temperature increases we have less damages. However, such an assumption should

not be restrictive over the studied period bt ≈ b
(ΓY

t )2
.19

In the appendix, we introduce the de-trended economy, providing a detailed derivation. Additionally, we

discuss both the social planner problem and the decentralized problem in details.

19As we are looking at 6 years with an average low growth rate in the EU.
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5 Bringing the Model to Data

Bringing our model to data is essential to disentangle the drivers of the EUA futures. A major challenge,

however, stems from the unobservable nature of abatement and climate sentiment dynamics at the monthly

frequency. To overcome this limitation and fill the data gap in these areas, we have devised an innovative

methodology for estimating the shocks associated with both abatement and climate sentiment changes. We

also pay particular attention to match a broad spectrum of statistics, including the share of EU emissions,

emissions per sector within the EU, and the energy intensity of each sector.

5.1 Strategy

While we can reliably estimate consumption patterns, goods productivity, energy prices, and energy

supply dynamics using data from Eurostat and Bloomberg, the same approach is not feasible for abatement

and climate sentiment dynamics. This discrepancy arises because the latter involves more complex and less

tangible elements that are not directly captured in standard economic databases.

We begin our analysis by focusing on policy change dynamics and the estimation of climate sentiment

shocks, which are pivotal as they mirror shifts in the regulatory environment and alterations in firms’

perceptions of policy stringency. These shocks are indicative of how regulatory changes and policy updates

influence market sentiment, particularly in the context of emission control. To estimate these shocks, we

leverage the intrinsic design of the cap-and-trade system, which is structured to achieve a consistent reduction

in emissions over the duration of our study. This system’s design is key because it provides a framework where

emission targets are incrementally tightened, indicative of a progressively decreasing per-period cap. In our

methodology, we integrate an emissions dataset from EDGAR into our model, which has been specifically

modified to exclude long-term trends. This adjustment is critical as it enables us to effectively isolate the

climate sentiment shock series. This series provides insight into the evolution of market sentiment and

expectations in the face of ongoing regulatory and policy changes. This technique enables us to uncover

the often unobservable effects of policy shifts on market dynamics, thereby allowing us to represent how

regulatory changes impact carbon allowance prices.

Our model’s structural framework, which links economic activity, energy factors, climate sentiment

changes, abatement costs, and the carbon price, provides a comprehensive basis for analyzing residual volatil-

ity in the allowance permit market. This residual volatility is of particular importance in our analysis, as it

encompasses market fluctuations that remain unaccounted for by factors such as energy dynamics, economic
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activity, and policy shifts. In our model, we can ascribe them to abatement shocks. These shocks refer

to unforeseen changes in the costs associated with strategies and technologies that firms employ to reduce

emissions.

We estimate our model using Bayesian methods on monthly EU data from January 2013 to December

2018. To map our model to the data, we augment our equilibrium equations with observation equations as

follows: 

Production Index Growth

Consumption Index Growth

Per Capita Emissions Growth

Per Capita Energy Production Growth

Energy Production Price

Real CO2 Price Growth


=



(γyyt − yt−1)/yt−1

(γyct − ct−1)/ct−1

log γs +∆ log (et)

∆ log
(
yEt
)

∆ log
(
pEt
)

∆ log (τt)


, (18)

where γs represents the trend in emissions20 and γy denotes the trend growth rate of the economy. Con-

sidering the model’s stationary nature, it is imperative to transform the data series into a stationary form

before integrating them into the model. In line with the foundational approach established by Smets and

Wouters (2007), we address data that exhibit a unit root by rendering them stationary. This is achieved by

taking the logarithmic difference of the series as necessary.

5.2 Calibration

We summarise in this section the parametrisation of the model. For parameters for which the time

interval is relevant, the calibration is monthly. Consistent with standard practice, we have tailored the

model’s calibration to align with certain observed key aggregates. These include temperature, the share of

EU emissions, emissions per sector within the EU, the energy intensity of each sector, and the average value

of the EU ETS allowance price, all specifically within the context of the European Union. This calibration

ensures that our model accurately reflects the real-world dynamics and trends of these critical environmental

and economic indicators.

The parameters pertaining to the business cycle structure of our model are conventional. For the standard

parameters in these models, such as the discount factor β and the risk aversion σU , we align to typical values

used in macroeconomic modeling. Specifically, the capital intensity parameters are set at αN = αNE = 0.333,

while the depreciation rate δ is fixed at 0.008. The discount factor β is set at 0.9986 and the risk aversion

20Refer to appendix for the full description of the BGP.
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σU at 1.5.

In calibrating the climate block of the model, we follow Dietz and Venmans (2019) and set the parameters

for the global temperature function ζo1 = 0.50 and ζo2 = 0.00125.

We use the remaining parameters to match a number of relevant statistics for the EU. Specifically, the

share of the energy sector in the economy χ is fixed at 2%, while the elasticity in the CES function σ is

0.2, consistent with estimates in Labandeira, Labeaga, and López-Otero (2017). The emission intensity

parameters φE and φNE are calibrated to match emission to production in both sectors. As depicted in

Figure 4, the energy sector is approximately thirty times more emission intensive than the industry as a

whole.

Figure 4: Emission Intensity in the EA

Notes: The figure depicts the emissions intensity in the energy sector and in the total industry for the top 5 EA economies, along

with the EA mean over the estimated period (2013 – 2019).

As for the price of carbon, we proceed in two steps. We first find the value of the abatement function

level θ1 that is consistent with the observed mean EUA price of 7.54 euros. This also takes into account

22



the split of emissions across sectors (see Figure 5) and the emission intensity of the energy sector. Then,

we assume that the implied level of the EUA price was optimal over the 2013-2019 period and retrieve the

value of ΘT . More precisely, we find the value of ΘT that equates the steady state level of the welfare in

the model to the level of the welfare in the counterfactual optimal case. As we will show later, this does not

imply that the economy in the estimated model behaves optimally. In particular, high volatility in the EUA

price will generate losses in consumption for risk-averse agents that are more severe in the estimated case

than in the optimal case.

Figure 5: Sectoral Emissions in the EA

Notes: The figure depicts the emissions split between the energy sector and the rest of the industry for the top 5 EA economies,

along with the EA mean over the estimated period (2013 – 2019).

Finally, we use the decay rate of emissions η to ensure that the stock of emissions in the atmosphere

is consistent with the mean level of emissions observed during the studied period and we set the public

consumption to GDP ratio ḡ/ȳ at 0.22.

The comprehensive list of calibrated parameters, along with the targeted economic and environmental
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moments they allow us to replicate, can be found in Table 3 and Table 4, respectively.

5.3 Estimation

Our model’s shock processes and trends are estimated using a generalized Kalman Filter, specifically

chosen to effectively handle the model’s non-linear characteristics.21 We employ the Metropolis-Hastings

algorithm to approximate the posterior distribution, constructing our results based on four distinct chains.

The estimation outcomes are concisely presented in Table 5, where we display both the prior and posterior

densities of the estimated parameters.

The robust identification of the majority of these parameters indicates the informativeness of the data

used. Despite some constraints in pinpointing their exact values, the trends in emissions and output are

clearly discernible. Notably, our model’s estimation is able to capture the decoupling between output and

emissions. This is evidenced by the negative value of γx and the positive value of γy, a pattern that persists

even with the application of normal priors centered around zero for both trends.

6 EUA Futures Drivers and Optimal Policy

In this section, we first analyse the contribution of the different structural shocks to fluctuations in the

allowance price in the EU ETS. To do so, we utilize the parameters and shock series that we have previously

estimated. We then undertake a comparative study. We compare the EUA futures price with the case where

the environmental regulator sets the carbon price equal to the social cost of carbon (SCC), as determined by

our estimated parameters and shock series. This comparison is designed to measure the additional volatility

in the EU ETS market compared to the SCC over the studied period.

21A comparative analysis between first-order Bayesian estimation and second-order estimation highlights the significance of
non-linearities, especially during periods of increased market volatility (refer to Figure 11 and Figure 12).
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6.1 Uncovering Drivers in the EU ETS Futures Market

Figure 6: EUA Futures Price Historical Decomposition
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Notes: The figure depicts the path of the EUA futures price (black line) broken down into different drivers over the estimated

period (2013 – 2019).

Figure 6 illustrates the trajectory of the de-trended EUA futures price from 2013 to 2019, broken down by

various influencing factors. The primary drivers of the EUA futures during this period have been abatement

shocks, climate sentiment, and, to a lesser extent, energy shocks. In contrast, the other two factors impacting

firms’ demand for emission permits—goods supply and consumer demand shocks—have contributed less to

market volatility. This aligns with expectations, as these factors indirectly affect energy firms’ production

rather than their emissions directly. Goods Total Factor Productivity (TFP) shocks, for instance, represent

typical variations in productivity among final goods firms, such as the adoption of a new manufacturing

technique that increases output. Similarly, consumption shocks are indicative of changes in consumer demand

patterns, often reflecting shifts in consumer preferences. In our model’s context, this translates to consumers

becoming more patient and deferring consumption, thereby influencing the demand for emission permits.

Thus, EUA prices are primarily influenced by shifts in abatement technology, policy uncertainty, and

energy market dynamics. Energy shocks play a crucial role in energy generation, directly impacting the

equilibrium energy price. For instance, a significant technological advancement in the energy sector that
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enhances efficiency in energy production exemplifies a positive energy TFP shock. Empirical studies dis-

cussed earlier highlight the strong connection between the ETS market and energy markets, emphasizing

the influence of energy shocks.

Climate sentiment shocks are driven by changes in the regulatory landscape and shifts in firms’ perceptions

of policy strictness. As presented in the model section, these shocks reflect the impact of regulatory and

policy changes on market sentiment, especially regarding the per-period cap. Our analysis indicates that

uncertainty in allowance allocation significantly contributes to the variance in carbon prices. This finding is

consistent with the research presented in Koch et al. (2016), Deeney et al. (2016), and more recently, Känzig

(2021), which all underscore the substantial role of policy and regulatory shocks in historical EUA price

fluctuations.

Finally, abatement shocks, representing unexpected changes in the costs for energy companies to reduce

emissions, are also a key factor. These shocks might arise from groundbreaking innovations in low-emission

technologies or increased adoption of existing solutions. While such changes are not directly observable in

macro data, our innovative approach, as detailed in Section 5.1, enables us to identify these shocks.

Together, these observations effectively bridge the gap between empirical findings and the theory about

cap-and-trade, offering a comprehensive view of the factors driving EUA prices.

Figure 7 illustrates the contribution of each driver to the variance of the EUA futures price across various

horizons, highlighting the shocks with a prolonged influence on the EU ETS market.
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Figure 7: EUA Futures Price Variance Decomposition
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Notes: The figure displays the variance decomposition of the EUA futures price based on different horizons: one month, three

months, one year, and five years. This represents the theoretical variance decomposition of the permit price, taking into account

the estimated variances of shocks.

The three primary factors influencing EUA futures prices–energy TFP, climate sentiment, and abatement

shocks–account for a relatively constant proportion of the variance across different time horizons. In the

long run, the significance of energy shocks appears to slightly diminish, giving way to climate sentiment and

abatement shocks.

6.2 How does our estimated series compare to the actual data?

From our prior analysis, the primary drivers influencing the EUA future price and the overall EU ETS

market appear to be climate sentiment and abatement shocks. To ensure the validity of these findings, we

cross-referenced them with closely related real-world data to ascertain their accuracy and correlation.

Starting from abatement, we compare our derived estimated series for abatement against the annual data

reflecting the EU’s net-zero emission total expenditure. It’s essential to note that this data primarily show-

cases the EU’s overall commitment to green investments22 rather than the explicit abatement costs featured

in our model.23 Nevertheless, this comparison provides a valuable perspective on whether our model’s esti-

22Data: Contribution to the international 100bn USD commitment on climate-related expending (source: DG CLIMA,
EIONET)

23It measures the total amount spent from the annual budget of the EU Member States as well as of the European Commission
and the European Investment Bank, in order to contribute to the international 100bn USD commitment for climate finance
under the United Nations Framework Convention on Climate Change (UNFCCC).
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mations are in sync with the actual green investment expenditures. To facilitate a more detailed comparison,

we first transformed the annual data into a monthly format using Cubic Spline Interpolation. This allowed

us to align it with our monthly abatement estimation series. Figure 8 presents both the interpolated EU

data on total climate mitigation expenditure and our model’s estimated abatement investment. Both series

exhibit similar trends and business cycle fluctuations.

Figure 8: Estimated Abatement Costs and Climate Mitigation Investment Data
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Notes: The figure displays the estimated abatement costs as a deviation of their steady state, alongside the actual data on climate

mitigation investment for the EU in detrended log million euros.

Moving on to the climate sentiment, we turned to the US Sentometric data, as presented by Ardia,

Bluteau, Boudt, and Inghelbrecht (2022).24 This data served as a benchmark to gauge the correlation with

our deduced climate sentiment shock series. For the estimated climate sentiment/policy shock series, we

observe a negative correlation of 14% with the US climate Sentometric index. This correlation suggests that

when the climate sentiment index rises, climate concerns intensify, prompting the environmental regulator

to tighten the cap on emissions. Consequently, this leads to an increase in carbon prices.

Our findings from these cross-references reveal that our shock estimates align with the characteristics of

the actual observed data. This alignment affirms the validity of our analytical approach and the robustness

24Sentometrics is a term that refers to the quantitative analysis of sentiment derived from textual data. This approach is
often used in finance and economics to analyze sentiment in news articles, financial reports, and other textual sources to predict
financial market movements or economic indicators. See Algaba, Ardia, Bluteau, Borms, and Boudt (2020) for a comprehensive
literature review.
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of its results.

6.3 EU ETS cap-and-trade and Optimal Policy

To gauge the extra volatility in the EU ETS market, establishing a baseline is essential. For this, we create

a hypothetical scenario where the environmental regulator aligns the carbon price with the estimated SCC,

thereby achieving what is considered the first-best allocation in a decentralized economy. This scenario serves

as our baseline. In this approach, we utilize the parameters and shock series estimated earlier, replacing our

carbon price equation with the SCC.25 In this hypothetical model, policy uncertainty is non-existent. There

are no political interferences or alterations; once a policy is set, it remains unaltered. Consequently, under

the SCC framework, unforeseen climate sentiment shifts, which could otherwise influence the market, are

effectively nullified. This setup enables us to isolate and assess the extra market volatility in the EU ETS in

comparison to a scenario governed by the SCC, where the SCC is responsive to goods supply and consumer

demand shocks, energy shocks, and abatement shocks.

Figure 9: EUA Futures Price vs SCC Variations
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Notes: The figure shows the deviations of the estimated EUA futures price and the SCC in percentage deviations from their

respective steady states.

Figure 9 displays percentage deviations from the steady-state for both the estimated EUA futures price

and the estimated SCC. Although the trajectories of the EUA futures price and the SCC appear to mirror

each other to some extent, the magnitude of the SCC’s fluctuations is notably smaller–approximately one

25The SCC is formally derived in the Appendix.
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hundred times less than that of the EUA futures price. This significant disparity highlights the presence of

considerable additional volatility in the EU ETS market when compared to the SCC.

Table 1 contrasts several moments in the estimated EU ETS cap policy case with the counterfactual

SCC. By continuously aligning the marginal costs with the marginal benefits of emission reduction, the SCC

stabilizes abatement costs and marginal abatement costs, leading to a carbon price that has virtually zero

volatility, though at the expense of more fluctuating emissions. Additionally, the SCC tends to result in a

higher carbon price level. While a higher carbon price could potentially yield welfare gains for households,

it’s crucial to acknowledge the substantial uncertainty surrounding the estimation of the social cost of carbon,

as discussed in studies like Cai and Lontzek (2019) and Barnett et al. (2020).

Considering the inherent complexity in determining the SCC, it is unlikely that an environmental regu-

lator would rely exclusively on a single estimation of the SCC to set the emission cap. A more pragmatic

approach might involve agreeing on a specific emission trajectory through a cap-and-trade market (or, equiv-

alently, a defined path for the carbon price) and then adjusting the number of permit allowances allocated in

response to the shocks in the economy. In the subsequent section, we explore the potential of such adaptive

carbon cap rules, where the allocation of permit allowances is conditioned on the available information.

6.4 The cost of business cycle fluctuations

The implied uncertainty and price volatility incorporate business cycle welfare costs (Lucas (1987)). We

calculate the cost of business cycle fluctuations in consumption equivalence (CE) terms for both the SCC

and ETS price cases. To perform this calculation, we first compute the lifetime utility given by the value

function of our representative agent for the deterministic case. Subsequently, we compute the value for the

parameter ∆ such that the welfare in the stochastic framework is equal to the welfare in the deterministic

case. We denote the deterministic welfare function by WelfareDt and the stochastic counterpart by WelfareSt .

WelfareDt = u(Ct, Du(T
o
t )) + βEt{WelfareDt+1}

WelfareSt = u((1−∆)Ct, Du(T
o
t )) + βEt{WelfareSt+1}

As risk-averse agents dislike fluctuations, welfare in the stochastic economy is lower than what would be

obtained in the same economy where the standard deviation of all shocks is set to zero. Therefore, we have

E(WelfareSt ) <
¯WelfareDt .

We then find the necessary compensation needed in terms of CE to close the distance between the
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welfare in the stochastic case and the deterministic case. In other words, we find the value of ∆ such that

E(WelfareSt ) =
¯WelfareDt .

We obtain a value for |∆| of 0.01915 in the case where we follow a SCC and value for |∆| of 0.01919 in

the case where we implement an ETS price. This implies a cost of business cycle fluctuations amounting to

.22% in CE term per month between the first best policy and ETS carbon cap.

7 Responsiveness of Carbon Cap Rules

In the preceding section, we highlighted the pronounced volatility in the permit price observed during

phase 3 (2013-2019) of the EU ETS market. This volatility is not merely a statistical observation but carries

significant real-world implications. It is important to understand that while some degree of volatility is

anticipated in any cap-and-trade system, the levels observed in the EU ETS market during this phase were

particularly high. Such volatility can be a double-edged sword. On one hand, it can be seen as a reflection of

a market’s responsiveness to changing conditions, but on the other, it can introduce a level of unpredictability

that can be detrimental.

For policymakers, this volatility presents challenges. It makes it difficult to set long-term policies and can

undermine the very goals the cap-and-trade system is designed to achieve. If prices are too volatile, firms

might hesitate to invest in long-term emission reduction strategies, fearing that the costs might outweigh the

benefits if prices swing too widely (Martin et al. (2011), and European Parliament (2022), among others).

Market participants, especially firms, bear the brunt of this volatility. Excessive price fluctuations introduce

a level of market uncertainty that can be challenging to navigate. Such unpredictability makes it difficult

for firms and investors to commit to substantial long-term investments, especially when these investments

are potentially irreversible (Calel (2020) and Taschini (2021)). The fear of making a costly mistake due to

volatile prices can deter companies from investing in capital-intensive projects or adopting new technologies.

This hesitancy can slow down innovation and progress, particularly in sectors where upfront investments are

crucial for future decarbonization. Moreover, the inability to accurately forecast returns on these investments

due to price volatility can lead to missed opportunities and hinder strategic planning.

Furthermore, as Benmir and Roman (2020) points out, this volatility can seep into the financial markets.

When firms face higher risks due to unpredictable carbon prices, it can lead to higher risk premia. This

means that firms might face higher borrowing costs, as lenders demand a higher return to compensate for

the increased risk. In the long run, this can impact firms’ investment decisions, potentially slowing down
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the transition to greener technologies.

To counteract the uncertainties stemming from energy drivers, abatement innovations, and perceived

policy stringency, it is essential to adopt a strategy where the cap is not static but dynamically adjusted

over time to reflect these changing factors (Kollenberg and Taschini (2016), Karp and Traeger (2023)).26

Implementing a conditional supply of permit allowances that allows for a dynamic per-period cap could

effectively manage price volatility in the allowance market while keeping emissions on the desired trajectory.

To achieve this, we introduce a Carbon Cap Rule (CCR) designed to address the uncertainties primarily

associated with two critical factors: innovation in abatement and perceived regulatory uncertainty. The

CCR we propose can be likened to the environmental policy equivalent of the Taylor rule, a well-known

monetary policy guideline. Just as the Taylor rule provides a formulaic approach for central banks to adjust

interest rates in response to changes in economic conditions like inflation and output gaps, the CCR offers

a structured method for adjusting emission caps in response to both abatement and sentiment/regulatory

shocks. The CCR adjusts the quantity of emission permits (Qt) in the market. This adjustment is based on

deviations from the de-trended steady-state emissions (ēE) and abatement costs (z̄):

Qt = Q+ ϕe
(eEt−1 − ēE)

ēE
+ ϕz

(zt − z̄)

z̄
,

where ϕe and ϕz are coefficients that determine the sensitivity of the cap to changes in emissions and

abatement costs, respectively. This approach ensures that the cap is not static but dynamically adjusts in

response to abatement and climate sentiment shocks, similar to how the Taylor rule adjusts interest rates

based on economic indicators. By responding to these deviations, the CCR aims to align the realization of

the marginal costs of emission reduction with the marginal benefits, akin to how the SCC is calculated.27

We note that the regulatory will be reacting to realized changes in emissions eEt−1 to adjust the cap level.

We show how the shock sensitivity of the CCR differs from that of the SCC curve. To do this, we use the

parameters and shock series we previously estimated, replacing the carbon price equation in our model with

the CCR formula.28 We identify the optimal values for the coefficients ϕe and ϕz that result in the lowest

26It is widely understood that the cap should be conditioned on the realized shocks (Ellerman and Wing (2003), Jotzo and
Pezzey (2007), Newell and Pizer (2008), and Doda (2016)).

27The concept of the proposed CCR draws parallels with the ”target-consistent pricing” approach, a notion championed
by among others Stern, Stiglitz, Karlsson, and Taylor (2022). This method pivots around the idea that the Social Cost of
Carbon should be formulated in a manner that inherently aligns with the objectives set out in the Paris Agreement. Instead
of determining the SCC based on estimated damages from an additional ton of carbon dioxide, this approach works backward:
it starts with the goals of the Paris Agreement and then calculates the SCC required to achieve those specific targets. This
perspective ensures that pricing is consistent with broader climate objectives and should provide a clear policy and, crucially,
price signal for the necessary transition.

28Note that we retain the climate sentiment shock, even though one could contend that if a carbon cap rule were in place,
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possible standard deviation of the carbon price. We employ a quasi-Newton method to refine our initial

guess. The economy’s path is simulated to the second order for each parameter pair in the carbon cap rule

until the algorithm reaches convergence. Both estimated coefficients, ϕe and ϕz, are found to be positive.

This indicates that in the event of a positive shock to either emissions or abatement costs, the regulator’s

response, as per the CCR, would be to increase the cap.

ETS Cap Policy Social Cost of Carbon Carbon Cap Rule

Estimated Optimal ϕz = 1.0467 and ϕe = 0.4439

Column (1) Column (2) Column (3)

Consumption (Std. Dev.) 0.13 % 0.13 % 0.13 %

Output - Industrial Prod (Std. Dev.) 0.10 % 0.10 % 0.10 %

Emissions (Std. Dev.) 3.21 % 2.81 % 2.05 %

Abatement Cost (Std. Dev.) 29.15 % 11.01 % 4.62 %

Marginal Abatement Cost (Std. Dev.) 15.51 % 11.17 % 13 .66 %

Carbon Price (in euros) 7.50 7.52 7.53

Carbon Price (Std. Dev.) 18.91 % 0.17 % 6.31 %

Table 1: Policy Scenarios Estimated Second Moments

Notes: The table reports various moments under three cap policy scenarios. The first column corresponds to the estimated ETS

model, the second column corresponds to the Social Cost of Carbon – the optimal case, and the third column corresponds to the

Carbon Cap Rule (CCR). The CCR is Qt = Q + ϕe

(eEt−1−ēE)

ēE
+ ϕz

(zt−z̄)
z̄ .

Table 1 presents key statistical moments under three different cap policy scenarios. The first column

displays results from the estimated ETS model, the second column represents the SCC (considered the

optimal case), and the third column details the outcomes under the CCR. First, regarding macro aggregates,

the presence of habits, allows for better matching the standard deviation of consumption with respect to

output. Second, our proposed carbon cap rule allows for a reduction of about 34% in price volatility.

The CCR demonstrates a significantly stronger response to deviations in steady-state abatement costs as

compared to deviations in steady-state emissions. This implies that the rule prioritizes the management

of abatement costs over strictly adhering to per-period emission levels. This approach underscores the

importance of keeping abatement costs aligned, suggesting that economic feasibility in emission reduction

efforts is given precedence over rigid adherence to per-period emission targets.

climate sentiment might not influence the emissions path. Thus, our counterfactual can be viewed as a conservative scenario
where some unexplained (residual) volatility in emissions persists.
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Considering the CCR’s emphasis on managing abatement costs, it’s not unexpected to find that the

volatility of these costs under the CCR is quite similar to that in the SCC scenario. Moreover, the volatility

of the marginal abatement costs under both scenarios is almost identical. Yet, the volatility of emissions under

the CCR is about half of what it is under the SCC. In terms of carbon price volatility, the standard deviation

under the CCR is higher than that under the SCC. However, it is notably lower compared to the volatility

observed in the current ETS model. This suggests that although the CCR does not completely eliminate price

volatility, it markedly reduces the extremes of volatility observed in the existing ETS framework, mitigating

the unpredictability associated with abatement costs for firms. This effect is observable in Figure 10.

Figure 10: EUA vs SCC vs CCR Variations
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Notes: The figure shows the deviations of the estimated EUA futures price, the counterfactual SCC, and the counterfactual CCR

in percentage deviations from their respective steady states.

In addition, as demonstrated in Table 2, our proposed carbon cap rule is capable of reducing the business

cycle cost related to price volatility and economic uncertainty to approximately 0.03% in comparison to the

social cost, as opposed to the 0.22% welfare losses in CE observed in the case of the EU ETS cap concerning

the SCC.
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ETS Cap Policy Social Cost of Carbon Carbon Cap Rule

|∆| = 0.0191931 |∆| = 0.0191509 |∆| = 0.0191574

Column (1) Column (2) Column (3)

Welfare loss (in CE) w.r.t SCC 0.22 % — 0.03 %

Table 2: Business Cycle Welfare Cost

Notes: The table reports welfare business cycle costs of uncertainty for the three cap policy scenarios studied. The first column

corresponds to the estimated ETS model, the second column corresponds to the Social Cost of Carbon – the optimal case, and

the third column corresponds to the Carbon Cap Rule (CCR). The CCR is Qt = Q + ϕe

(eEt−1−ēE)

ēE
+ ϕz

(zt−z̄)
z̄ .

In summary, our analysis demonstrates that by dynamically adjusting the cap in response to deviations

from steady-state values of emissions and abatement costs, the proposed mechanism can effectively reduce

carbon price volatility, thereby decreasing overall market uncertainty.

We acknowledge the potential for such a rule to be implemented by a Central Carbon Bank, tasked with

overseeing carbon market dynamics (de Perthuis (2011), Pahle and Edenhofer (2021), Blanchard and Tirole

(2021)). As a regulatory authority, this entity would manage the supply of EUA allowances, intervening as

needed to stabilize prices. While our study does not delve into the specific governance structure of a Carbon

Central Bank, we recognize that its primary function of managing the cap could be guided by the principles

of the CCR. This approach would ensure a more controlled and predictable carbon market, aligning with

broader environmental and economic objectives.

8 Conclusion

Cap and trade systems currently stand as the primary market-based method for regulating greenhouse

gas emissions. However, recent years have highlighted significant shortcomings in how these systems react

to market fundamental shocks. Some of these shocks are easily observable, like those related to energy

dynamics, while others are less well-observable, such as abatement shocks and climate sentiment shocks. In

response, we propose a novel approach to estimate less well-observable shocks and we construct a mechanism,

the ’Carbon Cap Rule’ (CCR), which dynamically adjusts the number of emission permits (the cap) in

response to abatement and sentiment shocks, crucial factors influencing emission permit demand. The CCR

conceptually parallels the environmental equivalent of the Taylor rule in monetary policy and aligns with
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practical mechanisms like the Market Stability Reserve in the EU ETS, which also adjusts the cap. Our

analysis suggests that the CCR could reduce the volatility of emission permit prices by about 35 percent,

resulting in welfare gains of about 85% in CE terms with respect to the SCC scenario. This approach aims

to enhance the efficiency and responsiveness of cap and trade systems to market changes.

Drawing on existing empirical research, we employ a panel Vector Autoregressive (VAR) model to examine

the response of the EU emission permit price to essential macroeconomic and energy supply factors. Our

analysis underscores the pivotal role of energy in influencing emission permit prices. This finding underpins

our decision to include energy production as an intermediary input in our macro-model, which is used to

assess the impact of less observable factors like abatement and policy changes. We then introduce a new

approach for estimating the factors driving the EU ETS. Our innovative methodology allow us to quantify

the shocks associated with abatement and climate sentiment/policy changes, enabling us to pinpoint all the

critical factors that have been empirically and theoretically affecting the price of emission allowances. We

have identified these key factors as abatement shocks, climate sentiment shocks, and energy shocks, each

playing a significant role in the dynamics of emission allowance pricing. Subsequently, we contrast the actual

emission permit price with a hypothetical situation where the environmental regulator sets the carbon price

in line with the Social Cost of Carbon (SCC). The aim of this comparison is to assess the additional volatility

present in the EU ETS market compared to the more stable pricing scenario under the SCC. This serves

as the baseline for evaluating the effectiveness of the CCR, essentially demonstrating that the proposed

mechanism makes the emission permit price in standard cap and trade systems more closely with the SCC.
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Appendix A Model Calibration and Estimation

Table 3: Parameters Value

Parameter Value Definition

σU 1.5 Risk Aversion

β 0.9986 Discount Factor

αE 0.33 Elasticity to Capital Input in Energy Production

αNE 0.33 Elasticity to Capital Input in Non-Energy Production

χ 0.02 Share of Energy in the CES

σ 0.20 Substitution Parameter in the CES

δ 0.0083 Depreciation of Energy and Non-Energy Capital

φE 0.0055 Emission Intensity in Energy Production

φNE 0.0002 Emission Intensity in Non-Energy Production

ΘT 26.29 Dis-utility Sensitivity to Temperature

η 0.0004 Decay Rate of Emissions in the Atmosphere

ζo1 0.50 Climate Transient Parameter

ζo2 0.00125 Climate Transient Parameter

θ1 0.239 Level of the Abatement Cost Function

θ2 2.7 Curvature of the Abatement Cost Function

ḡ
ȳ 0.22 Government Spending to Output Ratio
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Table 4: Moments matching

Variable Label Target Source

ETS Mean Carbon Price (euros) τ 7.54 ICE

Cumulative Emission (World, GtC) X 800 Copernicus (EC)

Monthly Emission Flow (World, GtCO2) ET + E∗ 4.51 Ourworldindata

Share of EU27 in World Emissions (%) ET /(ET + E∗) 6.73 Ourworldindata

Share of Emissions from Energy Generation in the EU (%) EE/ET 33.56 OECD

Emission intensity in the EU (kCO2 / euros) ET /Y 0.20 OECD

Emission intensity from Energy Generation in the EU (kCO2 / euros) EE/Y 0.07 OECD

Abatement level (percentage of energy emissions) µ 0.20 EDGAR (EC)

Temperature T o 1.00 NOAA

Notes: All the values reported in this table are perfectly matched by the model at the steady state.
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Table 5: Estimated Parameters

Prior Distributions Posterior Distributions

Distribution Mean Std. Dev. Mean [0.05 ; 0.95]

Shock processes:

Std. Dev. Goods Productivity σA IG2 0.10 0.05 0.02 [0.01 ; 0.03]

Std. Dev. Energy Productivity σAn
IG2 0.10 0.05 0.01 [0.01 ; 0.02]

Std. Dev. Energy Price σp IG2 0.10 0.05 0.08 [0.05 ; 0.10]

Std. Dev. Climate Sentiment σCS IG2 0.10 0.05 0.03 [0.01 ; 0.04]

Std. Dev. Consumption σB IG2 0.10 0.05 0.07 [0.02 ; 0.12]

Std. Dev. Abatement Cost σZ IG2 0.10 0.05 0.18 [0.09 ; 0.30]

AR(1) Goods Productivity ρA B 0.30 0.10 0.41 [0.08 ; 0.68]

AR(1) Energy Productivity ρAn
B 0.30 0.10 0.29 [0.01 ; 0.43]

AR(1) Energy Price ρp B 0.30 0.10 0.47 [0.20 ; 0.70]

AR(1) Climate Sentiment ρCS B 0.30 0.10 0.60 [0.21 ; 0.88]

AR(1) Consumption ρC B 0.30 0.10 0.26 [0.03 ; 0.55]

AR(1) Abatement Cost ρZ B 0.30 0.10 0.53 [0.14 ; 0.82]

Structural Parameters:

TFP Trend (γy − 1)× 100 U 0.00 0.28 0.13 [-0.14 ; 0.28]

Emissions Trend (γx − 1)× 100 U 0.00 0.13 -0.07 [-0.29 ; 0.27]

Notes: IG2 denotes the Inverse Gamma distribution (type 2), B the Beta distribution, and N the Gaussian distribution.
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Appendix B Order of Estimation

Figure 11: EUA Futures Pathway
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Notes: The figure shows the path of the ETS carbon price (2013 – 2019) when estimated using 1st order and second order

estimations as well as when simulating a model using first and second orders.

Figure 12: Abatement Cost Pathway
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Notes: The figure shows the path of abatement cost carbon price (2013 – 2019) when estimated using 1st order and second order

estimations as well as when simulating a model using first and second orders.
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Appendix C Case of Production Damages

In this section we presents the 2nd order estimation results where climate damages are modeled following a

production damages framework à la Nordhaus. We note that the results are sensitively similar to the climate

diutility case. Figure 13, figure 14, and figure 15 presents the shock decomposition, variance decomposition,

and the comparison between the SCC and EU ETS.

Figure 13: EUA Futures Price Historical Decomposition
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Notes: The figure depicts the path of the EUA futures price (black line) broken down into different drivers over the estimated

period (2013 – 2019).
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Figure 14: EUA Futures Price Variance Decomposition
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Notes: The figure displays the variance decomposition of the EUA futures price based on different horizons: one month, three

months, one year, and five years. This represents the theoretical variance decomposition of the permit price, taking into account

the estimated variances of shocks.

Figure 15: EUA Futures Price vs SCC Variations
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Notes: The figure shows the deviations of the estimated EUA futures price and the SCC in percentage deviations from their

respective steady states.
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Appendix D Case of Cobb-Douglas Production Function Aggre-

gator

In this section we presents the 2nd order estimation results where the final firms production function

is modeled via a standard Cobb-Douglas function. We note that the Cobb-Douglas function gives more

importance to the energy sector within the shock decomposition due to the ease of energy substitution effect

compared to the CES case. Figure 16, figure 17, and figure 18 presents the shock decomposition, variance

decomposition, and the comparison between the SCC and EU ETS.

Figure 16: EUA Futures Price Historical Decomposition
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Notes: The figure depicts the path of the EUA futures price (black line) broken down into different drivers over the estimated

period (2013 – 2019).
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Figure 17: EUA Futures Price Variance Decomposition
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Notes: The figure displays the variance decomposition of the EUA futures price based on different horizons: one month, three

months, one year, and five years. This represents the theoretical variance decomposition of the permit price, taking into account

the estimated variances of shocks.

Figure 18: EUA Futures Price vs SCC Variations
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Notes: The figure shows the deviations of the estimated EUA futures price and the SCC in percentage deviations from their

respective steady states.
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Appendix E Balanced Growth Path

To carry out our structural parameters estimation via Bayesian estimation, we first need to specify the

de-trended economy along its balanced growth path.

The growth rate of ΓY
t dictates the economy’s growth rate on the balanced growth path.29 This growth

rate is denoted by γY , where:

ΓY
t = γY ΓY

t−1 (19)

Variables that are stationary are represented by lowercase letters, while those that are growing are

indicated by uppercase letters. For instance, in the expanding economy, the final firm output, the non-

energy output (intermediate variable), and non-energy output are denoted by Yt, Y
NE
t and Y E

t , resepctively.

To obtain the de-trended output, one must divide the output in the growing economy by the level of growth

progress:

yt =
Yt

ΓY
t

(20)

yNE
t =

Y NE
t

ΓY
t

(21)

ỹEt =
Ỹ E
t

ΓY
t Γ

E
t

(22)

yEt =
Y E
t

ΓY
t

(23)

where ΓY
t Γ

E
t = 1 (given that energy production in EU is not growing over the studied period). In the growing

economy, emissions from the energy sector are represented by Et and are defined as follows:

EE
t = (1− µt)φEY

E
t ΓX

t (24)

ENE
t = φNEY

NE
t ΓX

t (25)

where ΓX
t represents the decoupling of CO2 emissions relative to the output trend. Consequently, in the

29In our setup both final firms and non-energy firms grow at the identical rate ΓY
t .
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de-trended economy, the law of motion for CO2 emissions is expressed as:

eEt = (1− µt)φEy
E
t (26)

eNE
t = φNEy

NE
t (27)

where:

eEt =
EE

t

ΓY
t Γ

X
t

(28)

eNE
t =

ENE
t

ΓY
t Γ

X
t

(29)

The abatement cost in the growing economy is:

Zt = f(µt)Y
E
t (30)

In the de-trended economy, the abatement cost is represented as:30

zt = f(µt)y
E
t (31)

where zt =
Zt

ΓY
t
.

In this context, Xt denotes the cumulative emissions in the atmosphere, while the temperature in the

growing economy is represented by T o
t :

Xt+1 = ηXt + ET
t + E∗

t (32)

T o
t+1 = ζ1(ζ2Xt − T o

t ) + T o
t (33)

The de-trended Xt and T o
t read as follows:

γsxt+1 = ηxt + eTt + e∗ (34)

γstot+1 = ζ1(ζ2xt − tot ) + tot (35)

30Note that µt is stationary.
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where:

xt =
Xt

ΓY
t Γ

X
t

(36)

tot =
T o
t

ΓY
t Γ

X
t

(37)

with γs = γyγx.

In the growing economy, given the aforementioned growth progress, the production functions for both

the energy and non-energy sectors are defined as follows:

Ỹ E
t = εA

E

t AE
t (K

E
t )

αE(ΓY
t l

E
t )

1−αEΓE
t (38)

Y NE
t = εA

NE

t ANE
t (KNE

t )αE(ΓY
t l

NE
t )1−αNE (39)

Yt =

(
(1− χ)

1
σ (Y NE

t )
σ−1
σ + χ

1
σ Y E

t

σ−1
σ

) σ
σ−1

(40)

where, for both energy and non-energy labor lEt , l
NE
t , the technology shocks εA

E

t , εA
NE

t as well as the TFP

levels AE
t and ANE

t , are all stationary variables. Additionally, in the robustness exercise we consider the

climate damage function which incorporates the growth rate Γy
t such that d(T o

t ) = ae−bt(T
o
t )2 = e

− b

Γ2
t
(T o

t )2

.

By embedding the economy’s growth rate within the damage function, we can simplify the de-trended form

of the damage function without sacrificing generality, especially over the studied period (less than a 7 year

horizon).

De-trending the production functions gives the following:

ỹEt = εA
E

t AE
t (k

E
t )

αE(lEt )
1−αE (41)

yNE
t = εA

NE

t ANE
t (kNE

t )αE(lNE
t )1−αNE (42)

yt =

(
(1− χ)

1
σ (yNE

t )
σ−1
σ + χ

1
σ (yEt )

σ−1
σ

) σ
σ−1

(43)

The capital-accumulation equations for both the energy and non-energy sectors in the growing economy

read as:

KE
t+1 = (1− δ)KE

t + IEt (44)

KNE
t+1 = (1− δ)KNE

t + INE
t (45)
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In the de-trended economy, we thus have:

γykEt+1 = (1− δ)kEt + iEt (46)

γykNE
t+1 = (1− δ)kNE

t + iNE
t (47)

with both capital and investment de-trended variables reading as: kNE
t =

KNE
t

Γy
t

and iNE
t =

INE
t

Γy
t
, respectively.

The same applies for the energy sector.

Moreover, the economy’s resource constraint is:

yt = ct + gt + f(µt)y
E
t + iEt + iNE

t (48)

Finally, in the growing economy, the utility function is as follow:

∞∑
t=0

βt

(
(Ct − hCt−1 −ΘT

t T
o
t )

1−σU

1− σU

)
(49)

where Ct is consumption, β the subjective discount factor, and σU the curvature parameter. The de-trended

utility function takes the following form:

∞∑
t=0

β̃t

(
(ct − h̃ct−1 −ΘT tot )

1−σU

1− σU

)
(50)

where we denote β̃ = β(γy)1−σU

, h̃ = h(γy)−1, and ΘT = ΓX
t ΘT

t .

Appendix F The Social Planner Equilibrium: Centralized Econ-

omy

The social planner’s optimal allocation and plan would aim to maximize the welfare of the society. This is

achieved by selecting a sequence of allocations, given the initial conditions for the endogenous state variables,

that adhere to the economy’s constraints. This equilibrium serves as a benchmark solution, which we use to

compare with the allocation derived in the decentralized economy for the carbon policy.

Please note, for ease of presentation, we show both cases of production damages and utility damages

within the same framework. We then set the parameter b = 0 to eliminate production damages, and
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similarly we set Θ̃T = 0 to revert back to the standard Nordhaus framework with production damages. The

planners’ problem reads as follows:

L = E0

∞∑
t=0

β̃t

(
(ct − h̃ct−1 −ΘT tot )

1−σU

1− σU

+ λt(yt − ct − iEt − iNE
t − gt − f(µt)y

E
t )

+ λtq
NE
t ((1− δ)kNE

t + iNE
t − γykNE

t+1)

+ λtq
E
t ((1− δ)kEt + iEt − γykEt+1)

+ λtΨ
NE
t (εANE

t e−b(tot )
2

ANE(kNE
t )αNE(lNE

t )1−αNE − yNE
t )

+ λtΨ
E
t (ε

AE
t AE(kEt )

αE(lEt )
1−αE − yEt )

+ λtΨt(((1− χ)
1
σ (yNE

t )
σ−1
σ + χ

1
σ yEt

σ−1
σ )

σ
σ−1 − yt)

+ λtV
X
t (γsxt+1 − ηxt − eEt − eNE

t − e∗)

+ λtV
T
t (γstot+1 − υo

1(υ
o
2xt − tot )− tot )

+ λtV
EE

t (eEt − (1− µt)φEy
E
t

+ λtV
ENE

t (eNE
t − φNEy

NE
t )

)

where, as we will demonstrate below, the Social Cost of Carbon SCCt represents the shadow value associated

with the temperature damages §tT .

The first order conditions (FOCs) that determine SCCt are the FOC with respect to CO2 energy emissions

eEt . In combination with the FOCs with respect to tot and xt we can pin down the expression of the SCC.

Meanwhile, the FOC with respect to µt determine the required level of abatement:

V EE

t = V X
t (51)

γsV T
t = β̃Et{Λt+1((1− ζ1)V

T
t+1 +ΘT +

∂yNE
t+1

∂tot+1

ΨNE
t+1)} (52)

γsV X
t = β̃Et{Λt+1(ζ1ζ2V

T
t+1 + ηV X

t+1) (53)

f ′(µt) = φNEV
E
t (54)

The remaining of the FOCs will be presented in the decentralized economy.
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Appendix G The Decentralized Economy

G.1 Households

Households maximize utility over consumption subject to their budget constraint. They choose con-

sumption expenditures and holdings of government bonds,pay taxes and receive dividends for firms they

own.

max
{ct,bt+1}

E0

∞∑
t=0

β̃t (ct − h̃ct−1 −ΘT tot )
1−σU

1− σU

s.t.

wNE
t lNE

t + wE
t l

E
t + rtbt +ΠE

t +ΠF
t − tt = ct + bt+1

From the FOCs, we get:

λt = εBt

(
ct − h̃ct−1 −ΘT tot

)−σU

− εBt+1β̃h̃
(
ct+1 − h̃ct −ΘT tot+1

)−σU

(55)

β̃rt+1Λt+1 = 1 (56)

where we note Λt =
λt

λt−1
.

G.2 Energy Firms

Energy producers maximize profits by choosing capital investment and labour wages, as well as the

investment in abatement as the regulator imposes a carbon price on their level of emissions. The production

technology is a Cobb-Douglas, while the abatement investment is a convex function on abatement levels.

Capital depreciates and follows a standard law of motion.

The firms’ problem reads:

max
{yE

t ,iEt ,µt}
E0

∞∑
t=0

β̃tΛt+1Π
E
t

where

ΠE
t = εpt p

E
t y

E
t − wE

t l
E
t − iEt − f (µt) y

E
t − eEt τt

s.t.
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yEt = εAE
t AE(kEt )

αE(lEt )
1−αE

eEt = (1− µt)φEy
E
t

γykEt+1 = (1− δ)kEt + iEt

The FOCs with respect to capital, investment, labour, abatement, and energy output read as:

qEt γ
y = β̃Λt+1q

E
t+1

(
(1− δ) + αEΨ

E
t+1

yEt+1

kEt+1

)
(57)

qEt = 1 (58)

wE
t = (1− αE)

yEt
lEt

(59)

f ′(µt) = φEτt (60)

ΨE
t = pEt − (θ1µ

θ2
t + τt(1− µt)φE) (61)

where we denote ΨE
t and qnt the Lagrange multipliers associated with production inputs and investment.

G.3 Non-energy final firms

Non-energy producers maximize profits:

ΠF
t = yt − wNE

t lNE
t − iNE

t − εpt p
E
t y

E
t .

s.t.

yt =

(
(1− χ)

1
σ (yNE

t )
σ−1
σ + χ

1
σ yEt

σ−1
σ

) σ
σ−1

(62)

yNE
t = εANE

t ANE(kNE
t )αNE(lNE

t )1−αNE (63)

γykNE
t+1 = (1− δ)kNE

t + iNE
t (64)

The FOCs with respect to capital, investment, labour, energy, and non-energy production, yield the
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factor prices:

qNE
t γNE = β̃Λt+1q

NE
t+1

(
(1− δ) + ΨNE

t+1

∂yNE
t+1

∂kNE
t+1

)
(65)

qNE
t = 1 (66)

wNE
t = ΨNE

t

∂yNE
t+1

∂lNE
t+1

(67)

pEt = ΨNE
t

∂yNE
t+1

∂yEt+1

(68)

qNE
t = qt

∂yt
∂yNE

t

(69)

where we denote ΨNE
t , and qNE

t , and qt the Lagrange multipliers associated with production inputs, non-

energy investment, and total output, respectively.

We can also easily check that ΨNE
t = 1 as we are in an RBC case.

G.4 Environmental Policy

When the environmental regulator optimally sets the environmental policy, the carbon price is set equal

to the social cost of carbon, as demonstrated in the social planner’s case:

τt = V EE

t (70)

Alternatively, the regulator might choose to set an emission cap as follows:

eEt = Carbon Cap (71)
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